\

=1 | 1 e

-1 .
Aﬂ-——-ﬂ'—‘ 'i"\\ e r

Graph Learning: AdriénArnaiz-Rodriguez and Ameya Velingker
PrlnC|pIes e 1 1 s GoogleResearch

Cha"enges ALICANTE unit

m ICML 202
and Open Directions @ Verra pusii

https://icml2024graphs.ameyavelingker.com/

https://icml2024graphs.ameyavelingker.com/

Intro to GNNs and relevant concepts
* Early Graph embedding methods
* GNNs
e Spectral Graph Theory

Transformers
Expressiveness
Generalizability
GNN Challenges
 Under-reaching
* Over-smoothing
* Over-squashing

Open questions

Panel Discussion

. . @ ® Graph Learning: Principles, Challenges, and Open Dlrectlons
' ICML 2024 - 22/07/2024

.........

0N =
.........
,,,,,,,

v \ 2
s o = E RS ST &

n
""""""
A e

Michael Bronstein Michael Galkin Christopher Morris Bryan Perozzi
DeepMind Professor of Al Research Scientist Assistant Professor Research Scientist at
Artificial Intelligence at Intel Labs at RWTH Aachen Google Research
University

Panel Discussion

Open questions and challenges on GNNs e ¢
Graphs + LLMs &R RS
Graph Foundation Models e R R Sl o SSNRE e

e
LY,

MR

‘e
4

Graphs

e Set of Nodes = I/
« Optionally with features X

 Set of Edges = E

* Adjacency Matrix = A

\

O

Graph Learning

Molecular

O
)tN/ Graphs
N
A A
N N

described by source

BEIC Digital Library

~

creator

Jacques-Louis David

The Death of Socrates

main subject

described by source

Knowledge
Graphs

creator

Raphael depicts
notable work

School of Athens

Socrates

depicts

trial of Socrates
participant

depicts

The Death of Socrates

Road Network
Graphs

Social
Network
- Graphs

N BUNKER HILL "_»/
) 1
- 7
T
EAST 5
JAMBRIDGES y L)
1 < 4
KENDALL 7 \/\ N Piers Pa'y.o
SQUARE e @
ouseS

@rmm EnglandiAquariu

\\ ' CharlesiRiver Esplanade
A2/MIT

5
s

0
oo

The Institate of /

Contemporary Art
-
T— 4
SOUTH BOSHIINS =KOHLER

WATERERONT, by Supply
5/ S

>/ D_STREET/ WEST
BROADWAY

Types of Tasks
* Node-level tasks

o Node classification

o Node clustering

o Node regression
* Edge-level tasks

o Link prediction
o Edge classification () ()

o Knowledge graph completion

* Graph-level tasks P ol
o Graph classification . /-
o Graph regression Iy,

Challenges of Machine Learning on Graphs

* Much of deep learning is on sequence or grid data
o Transformers on sequences of tokens
o Convolutional neural networks (CNNs) on pixel grids

* Graphs have more general topological structures
* Local neighborhoods vary in structure

* How to identify or order nodes within the graph?

Convolutional Networks

Weight Sharing

* Weight sharing

* Filters capture neighborhood
on a grid graph — T

* ResNet, VGGNet, etc.

Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b

Transformers

Multi-Head Attention

l Mathul l
| —
° Sequences Of tOkenS ' Scaled Dot-Product er
Attention ..]
* Next token prediction based LU LN
. I L|nm-m[Lln;@[L|n@
on a past context window 1 T F 1
W K Q

* Line graph

Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b

EARLY METHODS

MR

‘e
4

Early Methods: Node Embeddings and Graph
Kernels

 Map nodes into a (low-dimensional)
embedding space
o Similar nodes should have similar

embeddings e JZy,
"ENC(u)
* Methods / — .7,
o DeepWalk ([Perozzi et al., 2014]) \\ /”\ encode nodes 4
Thehe—,
o Node2vec ([Grover and Leskovec, 2016]) \ 'U()
ENC(v
* Techniques based on random walks, original network embedding space

matrix factorization

Graph kernels: map graphs to
embeddings

12

Node Embeddings for Downstream Tasks

* Graph clustering

* Link prediction

* Graph classification
* Node classification
* Node regression
 Anomaly detection

13

Similarity in Node Embeddings

* Similarity of two nodes given by embeddings: (z', z¥)

* Embeddings should maximize (zY, z') for those pairs (u, v) that are
similar

* How to decide whether u, v are similar?

o Supervised approach: learn node embeddings based on tasks, labels

o Unsupervised approach: learn node embeddings according to some structural
aspects of the network

14

Random Walks for Node Embeddings

* ldea: Similarity of two nodes determined by whether they occur
together in a random walk

 Random walks capture local information as well as some multi-hop
information

* Filters out pairs of nodes that don't occur together on random walks
(efficiency)

15

Random Walks for Node Embeddings

* Collect random walk statistics according to some random walk
strategy

o Run short fixed-length random walks starting from different nodes

o Collect statistics on which nodes appear on random walks starting from
each node

* Optimize the embeddings according to random walk stats

o Define loss (e.g., based on maximum likelihood)
o Stochastic gradient descent (SGD)

16

Random Walk Strategies

* DeepWalk ([Perozzi et al., 2013]): Use fixed-length, unbiased random
walks starting from every node

* node2vec ([Grover and Leskovec, 2016]): Use biased random walks
that can trade off between local and global views of the graph
o Interpolate between BFS and DFS
o In-out parameter and return parameter

17

DeepWalk

[Perozzi et al., 2014]

* Fixed length, unbiased random walks from every node

@ -0.6}
\ . & 17 * .‘
n \ | o 08 @g g o -
B S \[’ = 3
. . _/‘- ‘. —1.0f ' = 2 ®
o \ ® . ‘e s .
gl A 12| 0 g)
N ;
» i 10 » —1.4}
.. . .I 29 8 16k
o »
-1.8}) .
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
26

(a) Input: Karate Graph (b) Output: Representation

Limitations of Node Embeddings

* Transductive: Cannot get embeddings for nodes not seen during
training, e.g., in new or dynamic graphs

* Unable to capture common structural properties across long
distances

* Unclear how to incorporate rich node-, edge-, and graph-level
features

SOLUTION: Graph neural networks (GNNs) for deep representation
learning!

19

Intuition: Convolutional Networks

Weight Sharing

* Weight sharing

* Filters capture neighborhood
on a grid graph — T

* GNNs generalize this intuition to general graphs
* Challenge: neighborhoods look different!

Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b

21

GRAPH NEURAL NETW
(GNNSs)

Rl -

" 13
w\.wnr .

GNNSs - Message Passing Networks (MPNNs)

* Combine node-, edge-, and graph-

mij = fo(hi, by, e;5)
level features

hi = folhi, Y mj)

JEN;

* Perform iterative message passing
step

* Deal with varying local
neighborhoods

* Parameter sharing (#params not
depending on graph size)

Gilmer, J., Schoenholz, S. S., Riley, P. F.,, Vinyals, O., & Dahl, G. E.
Neural message passing for qguantum chemistry. ICLM 2017, 23

MPNNSs: Aggregate and Update

* Initial node features h ©
* Edge features e,

* Iteratively perform L message passing steps to produce node embeddings h (Y, h (), ... h 1)

gj;_l) Mt (hq(f)] h,gt)) eu?v) Message from neighbor v to u

] . : :
ag&—F) faggregate({{m(t_l_l) ‘ " EN()}}) :’:rgrr:ﬁ;;l?rlil:z\)/(?r:;\/rg)functlon

h(t—l—l) . fupd te(h(t) (t—|—1)) Final update combining

aggregation with self features

24

Readout Layer

* After L message-passing
layers, we get embeddings
h, M at each u

e How to convert to a final
prediction?

* Use a readout layer

Node-level task:

v = freadout (th,L))

Graph-level task:
hG’ — freadout({{hfg;L) ‘ (O V}})

Edge-level task:
Buv = freadout(h&L)a hgjL))

25

GNN in Action: Node Classification

Input Graph

aggregation

update update

Binary Classification

classification

Figure 1: One-layered message passing graph neural networks.

Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv:2003.04078.

GNN in Action:
More Layers

{one

Received Messages

@001

{@.0) -
aggregation

@ ey~
{{@hw-
update
update
(0.0~ o
Embeddings Binary Classification

0.0~

(@@
classification

(©0.0)~

(©@.0)~ (0.0)~

Fieure 2: Two-lavered messace nassine eranh neural networks.

oy~

Input Graph Received Messages

0.9.0n~ @

. (@01
aggregation

update update

(8,.0)~ {@on~

Embeddings Received Messages

(o.0.0h~
(@.0n-

aggregation

{e.0)~

(o

update
update
(0.0)-
Embeddings

0.0~

(©.8) -
classification

©.0)~

(©.0)~ 9.8)~

Figure 2: Two-layered message passing graph neural networks.

Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv:2003.04078.

27

Graph Convolutional Networks (GCN)

[Kipf and Welling, 2017]

A“ —A+] * A =nxn adjacency matrix
N D =nxndiagonal (degree)
D=D+1 matrix
« Update Rule: / Column-stacked node representations

HE+D — (WmH(t)@—l/zgjj—l/z)

RN

Nonlinear activation d.., x d, weight matrix (learnable)
(e.g., ReLU)

28

Graph Convolutional Networks (GCN)

[Kipf and Welling, 2017]

)
m{tD = A (h, h{) e, ,) = by afELH fdggleglte({{m a4 [veN(u)}}) = Z mg’il)
Tl ’ : \/(1L ll (1(’UEN(U) |

(t4+1) (t) p(t+D ® [al+D) ht!
h — Jupdate h) W
U fId t(y) + dcg()

. : Column-stacked node representations

Update Rule: e

HE+D — (WmH(t)jj—l/zgjj—l/z)

RN

Nonlinear activation d.,., x d, weight matrix (learnable)
(e.g., ReLU)

29

GraphSAGE

[Hamilton et al., 2017]

* |dea: Sample and aggregate
e Use random samples of neighbors from multiple hops

]/ label

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

30

GraphSAGE

[Hamilton et al., 2017]

2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

Neighborhood = fixed-size sample

m&tj}-l) - Mt(hg)a h,gjt),eum) - hrgt) from 1-hop, 2-hop neighbors
al*) = foeregate({mITY | v e N(u)}) = deg Z m(t+D
’UEN(U)

hg—l_l) s fupdate(h(t)a 854—1)) - O_(w(t) [hg), agﬁ—l—l)])
\ Nonlinear activation (e.g., ReLU)

31

Graph Attention Networks (GAT)

[Veli¢kovié et al., 2018]

* Assign importances to neighbors in the aggregation step

e Use an attention mechanism to compute scores

LeakyRelU

softmax

concat/avg /.
- > h)

activation function \

32

Graph Attention Networks (GAT)

[Veli¢kovié et al., 2018]

concat/avg
> h)

m{+D = K

u, v

a&t—l—l): Z oa(t+1)m(t+1)

Attention Scores:

h(t—l_l) . J(W(t) a(tH)) D) — eXp(LEAKYRELU((b(t))T[W(t)hg) [W(t)h;t)]))
v Zwej\/’(u) eXp(LEAKYRELU((b(t))T[W(t)hq(f) I W(t)hg)]))

33

TOOLS FOR GRAPH
LEARNING

REIETIN)
L (11 91

Spectral Graph Theory

Laplacian Eigenvectors

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient on the graph
[Chung, 1997]

L=D-A=0A0" =) Ngip]

L=D YLD 12— pAPT

o = [¢17¢27"'9¢)n]
A= diag()\l,)\g, .o .,)\n)

(L1 =XM1 =0
Loy = Ao (.t ¢2 L 1)

(Lon = Andn (st @n L (d1,...,0n-1))
AM=0< A< A,

Laplacian Eigenvectors

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient on the graph

L=D-A=0A0" =) Ngip]

L=D YLD 12— pAPT

D = [p1, P2, ..., n]

A= diag()\l,)\2, e ey)\n)

(Lo
J Lo

= A1 =0
= Xa¢2 (s.t po L 1)

\L¢n :)\nd)n (S-t an 1 (lea“-
A =0< A <00 Ay,

3 qbn—l))

[Chung, 1997]

Variability of node signal wrt graph structure

/

.

FTLf=) (fu—fo)

(u,v)EE
fTLf
Ra(f) =
T
G = argming p r) Ba(f)
T

Pr, P

Eigenvalues are the Rayleigh Quotient
of the eigenvectors of the graph
(orthonormal functions that minimizes variability
wrt the structure of the graph)

\

/

37

Laplacian Eigenvectors

A1 = —0.00

38

Cheeger constant creeer 1570 cung 1007

Min Cut
Size of the minimum cut to disconnect the graph

0S5 = {6 — (u,’U) cu €5,V € S’} # of inter-edges

0S| . -
. _ Normalized by minimum
mln{VOI(S), VO](S)} volume of node subset

hs =

[hG — gﬂclg hs Cheeger Constant]

39

Cheeger constant creeer 1570 cung 1007

Min Cut

Size of the minimum cut to disconnect the graph

0S5 = {e — (u,’U) cu €5,V € S’} # of inter-edges

05]

hs =

min{vol(S), vol(S)}

\

hcg = min hg

SCV

Cheeger Constant

N\

J/

(

\.

A2
— < hg <
9 = G =

\v/2)\a Cheeger Inequality

\

J

Size of Cut as Laplacian Quadratic form x; = {

0S|=a"Le= D (vu—x,)>=) I[(u,v)€dS]

1
0

(u,)eFE (u,v)ERE

Normalized by minimum
volume of node subset

ifie S
ifi¢ S

40

Laplacian Eigenvectors

= /]
N A,

O\ ’-/ /

97
=2

[~ ~L] S
!-.ﬂ AT

< '-1' %
m %‘r’r?;ﬁﬁf

Minimum amount of energy needed to disconnect the graph
Bottleneck

41

Effective Resistance and Commute Time

 Commute time: Expected number of steps for a Random-Walker go from u to v and come back

Captures global behavior and long-range dependencies

-
CT(u,v) = H(u,v) + H(v,u)
CT
T)

The more and shorter
paths between a pair of
nodes

The smaller R, is

Even if SP does not change

42

Effective Resistance and Commute Time

 Commute time: Expected number of steps for a Random-Walker go from u to v and come back
Captures global behavior and long-range dependencies

4)
CT(u,v) = H(u,v) + H(v,u)
CT
fuw = 200
v
S / The more and shorter
paths between a pair of
R 1 (diluw) @i(v) ? nodes
o — N\ Vd, The smaller R, is

B Even if SP does not change
1 117\ " 117
) E)_gbz ;f — (L + T) — — Pseudo-Inverse

n

>
Ry, =(ei—ej)" LT (e;—e;)) = Ry =L+ L —2L]

iJ

R € R™*" = 1diag(L™)” + diag(L)17 — 2L7

43

Effective Resistance

* View graph as electrical circuit

* Edges are resistors

e Send current between two points and
measure effective resistance

* ERs capture topological structure in
graph

* Widely used in theoretical
computer science
* Graph sparsification
* Linear system solvers
* Graph clustering

44

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
RGS(U,’U) — mcu’fv U

45

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
Res(u, U) — mcu’v U

46

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
Res(u, U) — mcu,v U

u-w v w uin 6 steps

47

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
RGS(U,’U) — mcu’fv U

48

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
Res(u, U) — mcu’v U

49

Effective Resistance as Commute Times

e Start random walk from u

* C,, is expected time to reach v
and come back to u

1
Res(u, U) — mcu,v U

uw v w uinb5 steps

50

REIETIN)
L (11 91

Transformers

Mathdul
fthax

* Sequences of tokens o o]

Scale

* Next token prediction based
on a past context window

Mathiu

Boily

0
S
s

* Line graph
* Typically dense

Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b

Multi-Head Attention

Linear

Concat
Scaled Dot-Product Jz .
Attention -
| 1 1l
I Linear [Linear [Linear
- 7 7
W K Q

52

Graph Transformers

e Extension of transformers to graph-structured data

* Instead of next-token prediction in sequences, learn node
representations

» Often dense (full connections) - computational graph different from
input graph
* Challenges
o How to account for loss of inductive bias from input graph structure?

o How to identify nodes (position, structure) within the graph?
o Scaling?

53

Graph Transformers

th hf“ {egju}
° S am p I e arc h |te cture 1;1,»-:'.\- Addaerorm]‘\;‘j‘}-, Add(s%Norm Addxeronn
([Dwivedi and Bresson, FFN; FFN;
2021]) ———— »/Add&Nomm — /Add&Nom Add&Norm<e——
* Number of newer 1
architectures ~F
© SAN Ea Ea
softmax; .
* Graphormer o A
- T
e GraphGPS
Pr::(l‘ltct.
Qkt Kt Ykt 5 Vit Eﬂ
R {ht} h {h3} {eii}

i () Laplacian EigVecs as . Graph Transformer Layer
: Positional Encoding

Graph Transformer Layer with edge features

Positional Encodings

e Sequence transformers use
sinusoids (sin, cos functions)

PE(pos,%) — S’l:n(pOS/]_OOOOz?:/dmodel)
PE(pos,2i—|-1) — COS(pOS/]_OOOOQi/dmodel)

55

Positional Encodings

* Sin, cos functions arise as eigenfunctions of Laplacians in Euclidean

space

* On graphs: eigenvectors of graph LaplacianL=D - A

0P,

Node N|_|
H
a) HHHHE
Node 2 | |
Node 1

Pn-1

b

b0 b1 P ¢3 bi Py

Node N

) eee
Node 2
Node 1

® PN ® P R ————— PN >

Ao =0 A A Az A Ay—q frequencies

56

Laplacian Eigenvalues/Eigenvectors

/\ - A, = 0015 A, = 0.045 . =0.037 l’} Eigenvector ¢
} / B colormap
5 I m max l

“'9/114 =10 /1/15 =1\-0 mo :/ }(3 /\\ ’, ’\: \/1_'1\11 ;/1(0/‘/\ /\/ 0
il ‘\‘/'»\ ’l\//—w
d ‘\' ' "‘ o ‘/‘ -maxI

Figure 3: Examples of eigenvalues \; and eigenvectors ¢; for molecular graphs. The low-frequency
eigenvectors ¢, @- are spread accross the graph, while higher frequencies, such as @14, @15 for the
left molecule or ¢, @11 for the right molecule, often resonate in local structures.

57

Learned Positional Encodings (LPE)

[Kreuzer et al., 2021]

 Learned positional encodings (LPE) on top of Laplacian-based features

" h Linear g | [Transformer
I\cl)r(:ac. A by, | Encoder Sum pooling Node-wise LPE
ode j - 2%k mXm k x 1

k Xm
Number of features k Number of features k

58

Combine LPEs with Attention

e Spectral Attention
Networks (SAN) -
[Kreuzer et al., 2021]

[Pre-computed steps 0(mE)

[/ Learned positional encoding (LPE) steps O (m?*N)

m eigenvectors eigenvector PE
A: Adjacency matrix
L: Laplacian matrix

N: number of nodes

E: number of edges.

Ng: Number of input
node features

eg: Number of input edge
features

0: Computation
complexity

Graph

ZZ-«,’

'?-..

n

Node features X(¥
=
ol

i3

(0) y(0) 0)
Xua Xnz X,

N.nol

The normalized eigenvectors

¢ of L are computed and
sorted such that ¢ has the

lowest eigenvalue and ¢,,,_4

has the m-th lowest.

The complexity is O(mE).

Node colormap
max

-max 0

b 4

& N
s D

®
) Fully connect the
graph
An edge is added to all pairs
of disconnected nodes and
given its own embedding.

The size of the edge embed-
ding dictionary increases by

N xng 1, and the number of edges
2
Edge features E(®) becomes N*.
EY EY O ED
3,
: 2|50 |5
) 3
o)
E x e, NZx(ep+1)

Figure 1: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.

A;: The i-th lowest eigenvalue
¢;: The normalized
eigenvector associated to 4;
¢ j: The j-th row of ¢;

For each node j, generate an
initial positional encoding (PE)
using the m-first ¢p and A.

If a graph has less than m
nodes, add a masked padding.

g
@
>
3
Nx2 xm
(&) Input layers for the
& feature

Add an MLP or linear layer
for both the node and edge
features.

X'

0(N) Nx(d—k)

d: hidden dimension

E®

o
—
=
~
—

NZxd

Generate node-wise
embedding O (Nm?

For each node i, generate a
learned positional embedding
(LPE) of size k.

A linear layer is applied,
followed by a multi-layer
Transformer encoder with
self-attention on the
sequence length of size m.

2xk m X m
[Llnear] [Transformer]
N
||
m
i
Nxk xm

(h) Concatenate node
features

Concatenate the node
features from the MLP to
those from the LPE.

@

X

| (i)

[Main Transformer steps O(N?)

(e) Pool the LPE

Use a sum or mean pooling on
the dimension of size m of the
node-wise embedding.

The result is the LPE matrix,
where each line i represents
the learned positional
encoding of the i-th node.

LPE
Number of features k

w\[

N xk

Apply the main
transformer

Attention between all pairs of
nodes features and the edge
between them. Different
linear projections K, Q, E are
used to compute attention for
real edges and added edges.

1
KT Transformer
Q" encoders
on the dimension of

E size |
0(N?)
Prediction Output
layer Nxd

59

Positional Encodings (with vs. without)

Model details ~ PATTERN CLUSTER MOLHIV
Attention % ACC % ACC % ROC-AUC - Best
Sparse - | 0.267+0.032 | 83.613+0.663 | 75683+0.098 | 73.46+0.71
Sparse Node | 0.198 £0.004 | 81.329 +2.150 | 75738 +0.106 | 7661+ 0.62
Full - | 0392 +0.055 73.84 + 1.80
= Worst
ull Node

Figure 6: Ablation study on datasets from [15;21] for the node LPE and full graph attention, with

no hyperparameter tuning other than + taken from Figure|5| For a given dataset, all models use the
same hyperparameters, but the hidden dimensions are adjusted to have ~ 500k learnable parameters.
Means and uncertainties are derived from four runs, with different seeds (except MolHIV).

60

Graphormer

[Ying et al., 2021]

* Two key new ideas
e Centrality encoding

0) _ ...
hi =T+ 2 deg (v;) Tz deg+(Uz)

 Spatial encoding (distance-based attention bias)

T Shortest path distance
u (W) (W) +b¢f/ |
LY Vi, ,Vj)?
_va e
Standard attention Attention bias

computation

61

Graphormer

[Ying et al., 2021]

I

| MatMul

t

 SoftMax |

t

V1 V9 V3 Vg Vs

4
Sc?le

| MatMul |

I

Spatial Encoding
V1 Vg9 V3 V4 Vs

[Lfneaﬂ) [Liﬁeal]) [Liﬁeal])

(e 1x

v

Node Feature

Edge Encoding

@ [T 1]

Centrality Encoding

—J

U3

Us

Uy

62

Graphormer: Molecular Graphs

[Ying et al., 2021]

Table 1: Results on PCQM4M-LSC. * indicates the results are cited from the official leaderboard [21].

method #param. | train MAE validate MAE
GCN [26] 2.0M 0.1318 0.1691 (0.1684*)
GIN [54] 3.8M 0.1203 0.1537 (0.1536*)
GCN-VN [26,/15] 4.9M 0.1225 0.1485 (0.1510%)
GIN-vN [54]115] 6.7M 0.1150 0.1395 (0.1396%)
GINE-vN [5.]15] 13.2M 0.1248 0.1430
DeeperGCN-VN [30,/15] | 25.5M 0.1059 0.1398
GT [13] 0.6M 0.0944 0.1400
GT-wide [13] 83.2M 0.0955 0.1408
Graphormersyar. 12.5M 0.0778 0.1264
Graphormer 47.1M 0.0582 0.1234

63

Graphormer: Molecular Graphs

[Ying et al., 2021]

Table 2: Results on MolPCBA.

Table 3: Results on MolHIV.

method #param. AP (%) method #param. AUC (%)
DeeperGCN-VN+FLAG [30] 5.6M 28.424+0.43 GCN-GraphNorm [5, 8] 526K 78.83+1.00
DGN [2] 6.7M 28.85+0.30 PNA [10] 326K 79.05+1.32
GINE-vN [5] 6.1M 29.17+0.15 PHC-GNN [29] 111K 79.34+1.16
PHC-GNN [29] 1.7M 29.47+0.26 DeeperGCN-FLAG [30] 532K 79.4241.20
GINE-APPNP [5] 6.1M 29.7940.30 DGN [2] 114K 79.70+0.97
GIN-VN[54] (fine-tune) 3.4M 29.024+0.17 GIN-VN[54] (fine-tune) 3.3M 77.80+1.82
Graphormer-FLAG 119.5M | 31.39+0.32 Graphormer-FLAG 47.0M | 80.51+0.53

Table 4: Results on ZINC.

method #param. test MAE
GIN [54] 509,549 | 0.526+0.051
GraphSage [18] 505,341 | 0.398+0.002
GAT [50] 531,345 | 0.384+0.007
GCN [26] 505,079 | 0.367+0.011
GatedGCN-PE [4] | 505,011 | 0.214+0.006
MPNN (sum) [15] | 480,805 | 0.145+0.007
PNA [10] 387,155 | 0.14240.010
GT [13] 588,929 | 0.226+0.014
SAN [28] 508, 577 | 0.139+0.006
Graphormersy v 489,321 | 0.122+0.006

64

Scaling

Charformer
(Tay etal, 2021)

, TokenLearner
Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)
Transformer-XL

(Dai et al., 2019)

Nystromformer
(Xiong et al., 2019)

 Typical transformer has O(N?)

Memory / Memory
. e, . R 2 Compresse
dependence — prohibitive for long S omessve| DoWnSampling ~cgnersse

Transformer

Set Transformer
(Rae et al., 2018)

(Lee et al, 2019)

sequences or large graphs

: Clusterformer
Routlng (Wang et al., 2020)

. Funnel Poolingformer T{Raoyr]elszj(,)zr;)rzg)er Reformer

(Zhang et al., 2021) \ itaev et al.,
* Dense attention — sparse optomer SN\ /7 T |

. : X ETC Big Bird
tt t ; (Ainslie et al., 2020) (zaheer et al., 2020)
a e n Io n 2 Ffv?:alt(alﬁgoszg)ormer Longformer S Clustered Attention
(Beltagy etal, 2020) Transformer g !
. . . Sinkhorn \ etal,
[] Stl II malnta In good gIObaI LOW Rank / Long short (Liu et al., 2020) (Vyas et al,, 2020)

Transformen
Tay et al., 2020b) |

Linformer

(Wang et al, 2020) Kernels Transformer

(Zhu et al, 2021)

connectivity

e Efficient computation: O(N+M)
interaction pairs

Fixed/Factorized/ :
Random Patterns

Adaptive
Sparse

GShard Transformer
(Lepikhin et al,, 2020) (Correia et al., 2019)

Sparse clam

(Du et al., 2021)

Random Feature Attention |Synthesizer
(Peng et al, 2021) (Tay et al, 2020a)

CC-Net

Blockwise Transformer (Huang et al, 2018)

(Qiu et al,, 2019)

Linear

Transformer
(Katharopoulos et al., 2020)

Sparse Transformer
Image Transformer {deta. 2

Switch
. (Parmar et al., 2018) T f Product Key
* Many sparse attention Al Transtormer s N KT

(Hoetal, 2019) (Lample et al,, 2019)

Scaling Transformer
(Jaszczur et al., 2021)

mechanisms proposed for
sequence transformers

Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient Transformers: A Survey. ACM Computing Survey, volume 55. 2022
65

Sparse Transformers for Graphs

* Exphormer ([Shirzad et al., 2023]) — similar to Big Bird ([Zaheer et al.,
2020])

* Nodeformer ([Wu et al., 2023)) — inspired by Performer
([Choromanski et al., 2021]), uses kernelized Gumbel-Softmax
operator

* Sampling-based: Gophormer ([Zhao et al., 2021]), NAGphormer
([Chen et al., 2022])

* Diffusion-based: Difformer ([Wu et al., 2023])
 Spectral filtering: Specformer ([Bo et al., 2023])
* And many more...

66

Exphormer

[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop — ICML 2023]

Original Graph Expander Graph
* Preserve locality from * Random walk mixing
the original graph Constant degree, O(N)
edges

Global Sink

e "Storage sink"

e Short connections
between all node pairs

Exphormer: Combine all three
to form the interaction graph!

67

Exphormer: Experimental Results

[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop — ICML 2023]

Table 1. Comparison of EXPHORMER with baselines on various datasets. Best results are colored in first, second, third.

Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN
Accuracy T Accuracy T Accuracy 1 Accuracy 1 Accuracy T
GCN (Kipf & Welling, 2017) 55.714+0.381 81.0 90.71+0.218 68.50 & 0.976 71.89 + 0.334
GIN (Xuetal, 2018) 55.26+1.527 88.98+0.557 96.49+0.252 6472 + 1553 85.391+0.136
GAT (Velickovic et al., 2018) 64.221+0.455 92.1 £0.242 95.5440.205 70.59 £+ 0.447 78.27 £ 0.186
GatedGCN (Bresson & Laurent, 2017; 67.31+£0.311 92.23+0.65 97.3440.143 73.84 £ 0.326 85.57 £ 0.088
Dwivedi et al., 2020)
PNA (Corso et al., 2020) 70.3540.63 - 97.941+0.12 - -
DGN (Beaini et al., 2021) 72.84+0.417 - - - 86.6840.034
CRaWI (Toenshoff et al., 2021) 69.011+0.259 - 97.944-0.050 - -
GIN-AK+ (Zhao et al., 2022b) 72:19::0.13 - - - 86.85£0.057
SAN (Kreuzer et al., 2021) - - - 76.69+0.65 86.5840.037
K-Subgraph SAT (Chen et al., 2022a) - - - 77.86+0.104 86.85+0.037
EGT (Hussain et al., 2021) 68.70+0.409 98.17+0.087 79.23+0.348 86.8240.020
GraphGPS (Rampisek et al., 2022) 72.30+0.356 93.50+0.41 98.054+0.126 78.02+0.180 86.69+0.059
EXPHORMER (ours) 74.69+0.125 94.02 + 0.209 98.55 + 0.039 78.07 + 0.037 86.74+0.015

68

Exphormer: Long-Range Benchmark

[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop — ICML 2023]

Table 3. Comparison of EXPHORMER with baselines from the Long-Range Graph Benchmarks (LRGB, Dwivedi et al., 2022). Best results
are colored 1n first, second, third.

Model PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact
F1 score 1 F1 score 1 AP 1 MAE | MRR 1
GCN 0.1268 + 0.0060 0.0841 + 0.0010 0.5930 + 0.0023 0.3496 4+ 0.0013 0.3234 + 0.0006
GINE 0.1265 £ 0.0076 0.1339 + 0.0044 0.5498 4+ 0.0079 0.3547 4+ 0.0045 0.3180 + 0.0027
GatedGCN 0.2873 £0.0219 0.2641 + 0.0045 0.5864 4+ 0.0077 0.3420 + 0.0013 0.3218 + 0.0011
GatedGCN+RWSE 0.2860 4+ 0.0085 0.2574 £ 0.0034 0.6069 + 0.0035 0.3357 £+ 0.0006 0.3242 + 0.0008
Transformer+LapPE 0.2694 + 0.0098 0.2618 £ 0.0031 0.6326 £ 0.0126 0.2529 + 0.0016 0.3174 + 0.0020
SAN+LapPE 0.3230 + 0.0039 0.2592 4+ 0.0158* 0.6384 + 0.0121 0.2683 £ 0.0043 0.3350 + 0.0003
SAN+RWSE 0.3216 & 0.0027 0.2434 + 0.0156* 0.6439 + 0.0075 0.2545 4+ 0.0012 0.3341 + 0.0006
GraphGPS 0.3748 + 0.0109 0.3412 + 0.0044 0.6535 + 0.0041 0.2500 + 0.0005 0.3337 + 0.0006

Exphormer (ours)

0.3975 4+ 0.0037

0.3455 + 0.0009

0.6527 + 0.0043

0.2481 + 0.0007

0.3637 + 0.0020

69

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

L. Captures inductive bias from input L. Computation graph can be different

graph topology from input graph Positional and
structural encodings

L. Efficient computation: O(N + M) L. Long-range modeling /

X Difficulty with long-range 2C Identifying nodes within graph

dependencies

- N
/ 2 Loss of inductive bias from graph

X Oversmoothing, oversquashing C Inefficient computation: O(N?)
9 J

Graph-oriented

X Expressivity limitations sparse attention
schemes

GraphGPS

[Rampasek et al., 2022]

e Combine transformers
with message-passing

* Transformers give
added expressivity
while message-
passing retains input
graph structure

* Framework — mix and
match MPNN layers,
attention layers, and
positional/structural
encodings

Positional encodings (PE) | Structural encodings (SE) | Graph features GPS layers

Local PE as node features. Sum over the rows
of non-diagonal elements of the random walk
matrix. w,, = ¥,(D"1A)" — w,,.

Global PE as node features. Eigenvectors of
the Laplacian ¢, associated to the k-lowest
non-zero eigenvalues.

Relative PE as edge features. Pair -wise
difference of local/global PE. Shown below is
the gradient of the eigenvectors Vgp,,.

MLP @
\ , ax
-c N " eee r ' .- ‘: Sl
V¢1 \ Ve, V¢k 0 5-rmg 3 star
Prax ’ Pax
‘) el]
Wm B wz Ws W Wi
- "nax
“ *-' C oo
b ¢1 b ¢2 g ¢k Bmax Ay =
(Any variabie input"y e MLP
I size network |
DeepSet

1
i

1
I 1
I

1
q_SEnnet

DeepSet allows to work varying number of
eigenvectors, and uses augmentation to
handle the sign ambiguity of eigenvectors.
SignNet is a sign-invariant network well
adapted to work with a varying number of
sign-ambiguous eigenvectors,

Local SE as node features. Diagonal of the
m-steps random walk matrix

Wy, = diag((D~14)™).

Global SE as node features. k-lowest
eigenvalues of the Laplacian A;.

Relative SE as edge features. Boolean
indicating if two nodes belong to the same
sub-structure.

"N
1

D

Batch-norm normalizes the encoding across
graphs for each 4, and w,,, to ensure they
are within the same range.

MLP is a multi-layer perceptron that
processes the encodings to learn a
meaningful structure.

DeepSet allows to work varying number of
eigenvalues.

Nodes features X° are
concatenated to the
positional features.

Global features g° are
concatenated to the node
features.

Edge features EC are
concatenated to the relative

PE/SE.
D

e
® xo g°
S

S

MLP processes the node
features and edge features
before the GPS layers.

MPNN layer can be any model acting on a given node’s
neighbourhood with edge features.

Transformer layer can be any fully-connected layer that
works with a variable number of input nodes without
edge features.

L-layers are repeated, with [being the current layer’s
index.

Residual connections for the MPNN and Transformer
layers are omitted for clarity.

MLPs mix the node/edge features with the PE and SE.

X L

r[+1

2-layer [N
+ MLP

------ ,—------.,,

Anyglobal %
Attention

Transformer

f

i i
| Transormer |
I I
I 1
: Performer :
[

1 BigBird

yi wvi

MLP
@ Concatenation
+ Sum
MLP Multi-layer perceptron
PNA Principal neighbourhood aggregation
GINE Graph isomorphism network with edges
GCN Graph convolutional network
Node features
Edge features
[0 Learnable module
{ . J Choice of multiple modules

Figure 1: Modular GPS graph Transformer, with examples of PE and SE. Task specific layers for
node/graph/edge-level predictions, such as pooling or output MLP, are omitted for simplicity.

EXPRESSIVITY

Expressivity of GNNs

* GNN architectures can represent some functions but not others

* What functions can a message-passing GNN represent?

73

Expressivity: WL Isomorphism Test

* WL test was proposed in 1968 as a heuristic
for the existence of an isomorphism

between two graphs

e Relation to result of [Babai, 2015]

* GNNs known to be bounded in expressivity
by the Weisfeiler-Leman (WL) test ([Morris

et al., 2019], [Xu et al., 2019])

e 1-WL test: Hash aggregated color multisets

of neighbors at each step

THE REDUCTION OF A GRAPH TO CANONICAL FORM AND THE
ALGEBRA WHICH APPEARS THEREIN

B.YU. WEISFEILER AND A.A. LEMAN

ABSTRACT. We consider an algorithm for the reduction of a given finite multigraph I" to
canonical form. Therein the new invariant of a graph appears the algebra A('). The
study of properties of the algebra A(I') turns out to be helpful in solving a number of
graph-theoretic problems. We pose and discuss some conjectures on the relation between
properties of the algebra A(T") and the automorphism group Aut(I") of a graph I'. We give
an example of undirected graph I'" whose algebra A(T') coincides with the group algebra of
some noncommutative group.

English abstract from the original article. An algorithm is considered, reducing
the specified finite multigraph I" to canonical form. In the course of this reduction, a new
invariant of the graph is generated algebra A(I"). Study of the properties of the algebra
A(T') proves helpful in solving a number of graph-theoretic problems. Some propositions
concerning the relationships between the properties of the algebra A(I') and the graph’s
automorphism group Aut(I') are discussed. An example of non-oriented graph I' is con-
structed whose algebra A(I') coincides with the group algebra of a non-commutative group.

English title from the original article. A reduction of a graph to canonical form
and an algebra arising during this reduction.

1. Consider a finite graph I' and its adjacency matrix A(I') = {a;;}, where a;; is the
number of edges from ith vertex to jth one; 7,5 = 1,2,..., n. If I' is an undirected graph
then set a;; = aj;. A canonical form of a graph is defined to be its adjacency matrix with
respect to a canonical labeling of its vertices, that is a partial ordering of the vertex set such
that if vertices a and b are incomparable then there is an automorphism of a graph moving
a to b and preserving the adjacency relation.

In Sections 6 and 7, we describe the reduction of a graph to canonical form which consists
of a step-by-step reordering of rows and columns of the matrix A(I") and, roughly speaking,

74

1-WL Isomorphism Test in Action

* 1-WL test: Hash aggregated color multisets of neighbors at each step
* Check if node color multisets of two given graphs match

h(e, {e,2,°}) h(e, {¢,®,°})
/ h(e, {o,)
q ﬁ
__hle o)

h(e, {*,°})

75

1-WL Algorithm

I-dimensional WL (1-WL) algorithm (a.k.a. color refinement)
Input: A pair of graphs G = (V. E, X) and H = (U, F,Y).

1. ¢ « HasH(X,) (Vo € V)

2. dY) « HasH(Y) (Vu € U)

3. for [=1,2,... (until convergence)
(a) if {{cg_l) v eV} # {{dq(f_l) | u € U}} then return “non-isomorphic”
(b) ¢ + Hasu(c! Y, e |we Ne(@)}) (Vv e V)
(c) di) + Hasu(dy ™V, {di | we Ng(w)}) (Yu e U)

4. return “possibly isomorphic”

76

1-WL Isomorphism Test

e Graph isomorphism is hard!

e 1-WL test fails to distinguish some
pairs of non-isomorphic graphs

* A vanilla message-passing GNN also
cannot distinguish such graphs

77

1-WL Limitations

Z Input Graph Input Graph

update All messages are {{€),€).€)}} update

} Embeddings Erdbeddings
\ - : (©.10.0.0m :\ / :

update All messages are {{-, 0, &0} update

Embeddings Embeddings
ii % -)DHH

Figure 4: Message passing GNNs cannot distinguish any pair of regular graphs
with the same degree and size even if they are not isomorphic.

=

(=¥

(d)

=
= = 2
— —
— ;
-
e

Figure 5: Although these graphs are not isomorphic or regular, GNNs cannot
distinguish (a) from (b), (c) from (d), and (e) from (f)

78

k-WL Algorithm

* Assign colors to k-tuples of nodes
k-dimensional WL (k-WL) algorithm
Input: A pair of graphs G = (V,E, X) and H = (U, F,Y).
1. ¢ « Hasu(G[v]) (Vv € V*)

2. dYY « HasH(H[u]) (Vu € U*)

3. forl =1,2,... (until convergence)
(a) if {{cvl % |lv e VE £ {{d(l 2 | w € U*} return “non-isomorphic”
(b) c“’ = few) [we NEI (o)) (Yo € Vi€ [k])
(c) ¢) HASH(cy - 1>,c§f)1,c§f)2,..., ,E)l)k) (Vv e V)
(d) d“> — {dl7V | w e NEVE(w)} (Yu € U*,i € [k])
() d « Hasn(di ", dP,,dD,,...,d0,) (vu e U)

4. return “possibly isomorphic”

Going Beyond WL Test?

* Going beyond WL by
proposing expressivity metrics
via graph biconnectivity
([Zhang et al., 2023])

* Generalized Distance WL (GD-
WL)

* Uncovers limitations of many
current GNN approaches

RETHINKING THE EXPRESSIVE POWER OF GNNS VIA
GRAPH BICONNECTIVITY

Bohang Zhang* Shengjie Luo* Liwei Wang Di He
zhangbohang@pku.edu.cn, luosj@stu.pku.edu.cn, {wanglw,dihe}@pku.edu.cn
Peking University

ABSTRACT

Designing expressive Graph Neural Networks (GNNs) is a central topic in learn-
ing graph-structured data. While numerous approaches have been proposed to
improve GNNs in terms of the Weisfeiler-Lehman (WL) test, generally there is
still a lack of deep understanding of what additional power they can systematically
and provably gain. In this paper, we take a fundamentally different perspective to
study the expressive power of GNNs beyond the WL test. Specifically, we intro-
duce a novel class of expressivity metrics via graph biconnectivity and highlight
their importance in both theory and practice. As biconnectivity can be easily cal-
culated using simple algorithms that have linear computational costs, it is natural
to expect that popular GNNs can learn it easily as well. However, after a thorough
review of prior GNN architectures, we surprisingly find that most of them are not
expressive for any of these metrics. The only exception is the ESAN framework
(Bevilacqua et al., 2022), for which we give a theoretical justification of its power.
We proceed to introduce a principled and more efficient approach, called the Gen-
eralized Distance Weisfeiler-Lehman (GD-WL), which is provably expressive for
all biconnectivity metrics. Practically, we show GD-WL can be implemented by a
Transformer-like architecture that preserves expressiveness and enjoys full paral-
lelizability. A set of experiments on both synthetic and real datasets demonstrates
that our approach can consistently outperform prior GNN architectures.

80

How to Enhance Expressivity?

e Standard GNNs limited by 1-WL graph isomorphism test

* Ways to improve GNN expressivity
* Add features
* Modulate message-passing
* Modify underlying graph

81

How to Enhance Expressivity?

e Standard GNNs limited by 1-WL graph isomorphism test

* Ways to improve GNN expressivity
* Add features
* Modulate message-passing
* Modify underlying graph

82

Adding Features

* Add node, edge, or graph features that incorporate structural,
positional, etc. information

* Often computed offline as a preprocessing step

/ Incorporate edge features

mU+l) — (1) 1,(%)

m,, U Mt (h hfv) euav) * New node features can
be added to h ©

* Graph-level features can

agﬂ) faggregate({{m(tﬂ) ‘ V C N(U)}}) be incorporated in M,

and aggregation, update
functions

h{t+1) — fupdate(h(t) altti))

83

Adding Features

* 1-WL limitation applies to very limited setting
* |Inability to distinguish node identities

e Simple tweak: initializing nodes with random features goes beyond 1-WL ([Sato et
al., 2021], [Abboud et al., 2021])

N <

Q. .

S o

(@)] [@)]

= = i -z~ center node
—_ t/)Ut same =~ nosame .

o layer o layer color -------- colors-+

<u b

n I

2 1-hop 2 1-hop (v9)

: 2
1 2-hop'

= 2-hop 5 2hop @ @ ()

W ol W ‘ .\ .. :

% 3-hop ® 3-hop @@ BDDCD)

) Identical Features. (b) Random Features.

84

Graph Substructure Networks

* Features that encode topological structures/substructures

e Graph Substructure Networks (GSN) [Bouritsas et al., 2022]: Encode subgraph
counts
* Pick a set of graphs: {H,, H,, ..., H.}
* Node features: Count appearance of v in different orbits for each H.
* Edge features: Count appearance of e in different edge automorphism orbits

85

Graph Substructure Networks

* Graph Substructure Networks (GSN): Encode subgraph counts
* Pick a set of graphs: {H,, H,, ..., H,} and encode node, edge orbits as features

e Choice of substructures is domain-specific

* Chains and cycles in molecules

86

Adding Features

* GSN requires domain specific knowledge to know which substructures to use
e General-purpose (not domain-specific) ways of adding features

» Affinity Measures: capture structural information about graph ([Velingker et al.,
2023])
 Effective resistances (or commute time)
* Hitting times
* Resistive embeddings

87

Effective Resistance

* ERs capture topological structure in
graph

* Widely used in theoretical
computer science
* Graph sparsification
e Linear system solvers
* Graph clustering

* View graph as electrical circuit

* Edges are resistors

* Send current between two points and
measure effective resistance

88

Effective Resistance: Going Beyond 1-WL

* ERs capture topological structure in
graph

* Widely used in theoretical
computer science
* Graph sparsification
e Linear system solvers
* Graph clustering

* View graph as electrical circuit

* Edges are resistors

* Send current between two points and
measure effective resistance

89

Resistive Embeddings

* ERs are scalar features along each edge
* Define richer vector embeddings that capture more structure
* Resistive embedding for each node satisfying:

Ty — I'qu% — Res(u, v)

* Efficient computation using dimensionality reduction techniques
(JL Lemma)

90

Incorportating Affinity Measures into GNNs

e Use affinity measures as edge
features in aggregation step! \

m{TY = M, (h{) hlD) e,)

w,

* ER, hitting time affinity

measures are scalar features
af:(fﬂ) = faggregate({{mg;l) v eN(u)l})

* Use Resistive Embeddings as hgﬂ) - fupdate(hg), a&tﬂ))
node features

94

Large-Scale Molecular Graphs:
PCQM4M-LSCv1

* PCQMA4M-LSCv1 in KDD Cup 2021 Contest
e Best published single model result (validation MAE < 0.12)

e Outperforms without molecular geometric features or use of dense attention
networks!!!

Table 4. Single-model OGBG-PCQM4Mv1 Results

Model #Layers Noisy Nodes Validation MAE

MPNN (Godwin et al., 2022) 16 Yes 0.1249 + 0.0003

MPNN (Godwin et al., 2022) 50 No 0.1236 + 0.0001
Graphormer (Ying et al., 2021) - - 0.1234

MPNN (Godwin et al., 2022) 50 Yes 0.1218 4 0.0001

MPNN + Conformers (Addanki et al., 2021) 32 Yes 0.1212 4+ 0.0001

MPNN + ER (ours) 32 Yes 0.1197 + 0.0002

How to Enhance Expressivity?

e Standard GNNs limited by 1-WL graph isomorphism test

* Ways to improve GNN expressivity
* Add features
* Modulate message-passing
* Modify underlying graph

96

Modulate the Message Passing

* Instead of adding features, modify the message passing mechanism itself
* Allow anisotropic aggregation of messages from neighbors

* We already saw one example: GAT

97

|dentity-Aware Graph Networks

[You et al., 2021]

* Use heterogeneous message-
passing to distinguish "root" node
from other nodes

o First compute ego network centered at
a node of interest

o Isolate instances of the center node in
the computational graph

o Apply message passing with different
sets of parameters for center node vs.
others

* Allows cycle detection

Example input
graphs

Existing GNNs’
computational
graphs

(root nodes are colored with identity)

+

ID-GNNs’
computational
graphs

Directional Graph Networks (DGN)

[Beaini et al., 2020]

* Anisotropic message passing using Laplacian flows

Examples of eigenvector-based directions

acos ¢, acos ¢, acos ¢;
S —>0—> —> —> —>O0—>O — —> —>0—>O — —p L 2 L]
(a) *—ro—> — —> —>0—>0 % % % % % % % %_’I_‘ T I Node Edge < { py=y=" e
Non.-dlagonal P R | | rt values gradient — —>o—>0—0
v oSEIm (D Hed g
C—>0—> —> —> —>0—>0 L] L] L] L] L] L] L J 1‘—&‘— Qo Qe ‘—14—1 l l l l & L L L]
v,

(b) ® ..b._} ° k"; o
Molecular P A 4 e Yod s 3 TN
graph ““‘; ."Co "\o . .. f - . .. @ .] Y \r'. 0 - ¥ .-u(‘ -

»O’.". ’ ’ ’ 0.. .:. ’ ’ ’ o«"-“‘ :
> ¥ 5. rﬁinl 0 ‘
(c) L Yherr) 4
Minnesota .
road map W 'm
5';':;.’39 2> ’.“:\5-) * % - r

Examples of inductive bias based directions

Field propagation due to the
presence of a charge or

defect in the crystal

(In an hexagonal lattice, it is
possible to add edges between
diagonal neighbours)

Direction out of the global
centroid
(We can also use local centroids,

» % _,e local polarity, or 3D structure to

define the fields)

*" Direction in/out of every city

(This mimics traffic in the
morning/afternoon, and the
expansion of suburbs population)

99

How to Enhance Expressivity?

e Standard GNNs limited by 1-WL graph isomorphism test

* Ways to improve GNN expressivity
* Add features
* Modulate message-passing
* Modify underlying graph

100

Modify Underlying Graph

e Use a computation graph that is different from the input graph

o Can add/remove edges or nodes to the input graph
o Can be an altogether different graph

* Can be useful for datasets/tasks where the given input graph is noisy

* Challenge: Allow less restrictive computation while still maintaining
the inductive bias of the input graph structure

101

Higher Order GNNs

e Recall the WL test of order k, i.e., k-WL

* Hierarchy in expressivity/distinguishing power

k-dimensional WL (k-WL) algorithm
Input: A pair of graphs G = (V,E, X) and H = (U, F,Y).

i

2.
3.

¢ « Hasu(G[v]) (Vv € V)

Y + HasH(H[u]) (Vu € U)
for [=1,2,... (until convergence)
(a) if £ v e VEY # {dY | w e UFR return “non-isomorphic”
(b) ¢ e | w e NEWE(0)} (Yo € VE,i € [K])
(c) P HASH((*,E,Z_U,(:S‘)l.,(tg.)‘_), — ,ci}l.)k,) (Vv eV)
(d) dY); « {di™ | w e NEWVE(u)} (Vu € Ui € [k])
(e) d¥ « Hasn(dl™,d",,dY,,dD) (vu e U)

. return “possibly isomorphic”

1-WL =2-WL<3-WL<4-WL< ...

* Build GNN architectures that mimic k-WL

* Hierarchy in expressivity/distinguishing power

102

Higher Order GNNs

[Morris et al., 2019]

* Input graph G = (V, E)
e [V(G)]* = set of k-element subsets of V
* Neighborhoods on [V(G)]:

N(s)={te V(G | [snt|=k -1}

* Local neighborhoods:

Np(s) ={t e N(s) | (v,w) € E where {v} = s\t and {w} =1\ s}

103

Higher Order GNNs

[Morris et al., 2019]

* Input graph G = (V, E)
e [V(G)]* = set of k-element subsets of V

N(s)={te V@) | |snt]=k—1}
Ni(s) ={t e N(s) | (v,w) € E where {v} =s\tand {w} =1\ s}

* Aggregation and update rule:

W () =0 (W 0O (s)+ D W h(w)
ueNT (s)

104

High Order Hierarchy

Variety of high-order WL variants

Various new GNN architectures that are as expressive as k-WL ([Azizian and Lelarge, 2020],
[Geerts, 2020], [Maron et al., 2019])

Sparse variants (e.g., SpegNets [Morris et al., 2022])

High-order GNNs still suffer from a O(n*) dependence — k > 3 impractical for larger graphs

Approximate more functions >

>

[GNNs] [(1, 1)-Spequt} [(2, 1)—Spequt] [(3, 1)—Spequt) | (k,1)-SpeqNet

A

(o Jo{anm) enm J S mme }= - S{mom

1
:,* E* = 3 Y
[kWL]_{ S-k-LWL* H S-k-WL H (k, k)-LWL (k, 2)-LWL

Figure 1: Overview of the power of the proposed algorithms and neural architectures. The green
and red nodes represent algorithms proposed in the present work. Forward arrows
point to more powerful algorithms or neural architectures. *—Proven in [Morris et al.,

2020]. AC B (A = B): algorithm A is strictly more powerful than (equally powerful
as) B.

105

MR

‘e
4

Generalizability of GNNs

e Expressivity vs. generalizability

* More expressive networks lead to
overfitting?

* |n practice, no! Expressivity and
generalizability often go hand in
hand

* Subgraph-based enhancements:
Graph Substructure Networks (GSN)

107

Graph Substructure Networks (GSN)

[Bouritsas, Frasca, Zafeiriou, Bronstein '22]

* Experimental results show improvements

Table 2: MAE in ZINC Table 3: Test and Validation ROC-AUC in OGB-MOLHIV.

Method

MAE

MAE (EF) Method Test Validation
GCN [107] 0.469-0.002 - ROC-AUC ROC-AUC
ggpfgigelmg] Tpame : GIN+VN[16] 0.7707 + 0.0149 0.8479 =+ 0.0068
GAT [109] 0.463+0.002) DeeperGCN|[111] 0.7858 £ 0.0117 0.8427 = 0.0063
MoNet [10] 0.407+0.007 - HIMP[104] 0.7880 + 0.0082 -
GatedGCN [110] 0.42240.006 0.36340.009 GCN+GraphNorm[97] 0.7883 + 0.0100 0.7904 & 0.0115
MPNN 0.254+0.014 0.20940.018 PNA[102] 0.7905 £ 0.0132 0.8519 + 0.0099
MPNN-r 0.322+0.026 0.279£0.023 PHC-GNN|[112] 0.7934 + 0.0116 0.8217 & 0.0089
PNA[102] 0.320£0.032 0.188+0.004 DeeperGCN+FLAG[113] 0.7942 + 0.0120 0.8425 + 0.0061
ggﬁﬁ%“og] g-ié?ig-gég 0.168+£0.003 DGN + eigenvectors [68] 0.7970 £ 0.0097 0.8470 + 0.0047
IDP{IOY ' 0.1510.006 P-WL [114] 0.8039 + 0.0040 0.8279 + 0.0059
SMP [48] 0.219+ 0.1384+ GSN (GIN+VN base) 0.7799+0.0100 0.8658+0.0084
GSN 0.140+0.006 0.115+0.012 GSN (DGN + substructures) 0.8039 + 0.0090 0.8473 £ 0.0096

108

Vapnik-Chervonenkis (VC) Dimension

 Binary classification model f

 Model f (with params 0) shatters data points x1, x2, ..., xn if for every
assignment of labels, there exists 6 for which f correctly classifies all xi

* VC dim = max number of points that are shattered by f

3 points shattered

109

VC Dimension

* Statistical learning theory: VC dimension gives a bound on test error in terms of
training error

* Hypothesis class H (output {-1, 1}), with h in H. VC dim = d. Training set size = m.
Then, with probability > 1 - 6, test error is not too big compared to training error:

8dlog(m/d) + 8log 5

m

Eout(h) § E?,n(h) + \/

3 points shattered

110

WL Meets VC

[Morris, Geerts, Tonshoff, Grohe - ICML '23]

* Consider binary graph classification
* Class C of GNNs

* G, G,, ..., G are shattered by Cif for any tin {0, 1}™, there exists a
gnn in C such that:

>2/3 it 1, =1, and
gnn(G;) =4~ /3 ifr atl

111

WL Meets VC

[Morris, Geerts, Tonshoff, Grohe - ICML '23]

» VC dimension bounds for a variety of settings:

Yes

I = b [Prop. 5]
'+ Bitlength < b? "+ ~poly(d, L) log(u) (r1
Uniform? Tﬂ 1-WL colors < u?
} = M d,I, [Prop. 1.2] ? OO [Thm. 4

Figure 1: Overview of our results for bounded-width GNNs. Green and red boxes denote VC
dimension bounds. Here, m,, 41 denotes the number of graphs of order at most n
with boolean d-dimensional features distinguishable by 1-WL after L iterations.

115

Expressivity vs. Generalizability

* Empirical results (e.g., Graph Substructure Networks (GSN)) show added
expressivity results in improved predictive performance

e Upper and lower bounds on VC dimensions of message-passing GNNs ([Morris,
Geerts, Tonshoff, Grohe - ICML '23])

* Question: Why does increased expressivity correspond to better generalization

while keeping the training set equal?

o [Morris et al. '23] demonstrated correlation between VC dimension and the number of non-
isomorphic graphs that 1-WL can differentiate

o Increased expressivity ==> higher VC dimension

116

Expressivity vs. Generalizability

[Franks, Morris, Velingker, Geerts — ICML '24]

* Initial work in ICLR 2024 in Vienna: Bridging the
Gap Between Practice and Theory in Deep
Learning (BGPT) workshop

— ‘ RWTHAACHEN
LOG i UNIVERSITY

Google Research

Weisfeiler-Leman at the margin:
When more expressivity matters

Billy). Franks (University of Kaiserslautern-Landau), Christopher Morris (RWTH Aachen University),

SR
o

- RPTU

e Poster on Thursday!

University
Ameya Velingker (Google Research), Floris Geerts (University of Antwerp) of Antwerp

Margin-based Bounds Condition When Margin Increases

The 1-WL algorithm is an upper bound for MPNNs
concerning distinguishing non-isomorphic graphs,

MPNNs < 1-WL

For linear classifiers the generalization error can be
characterized by the margin. Using the Weisfeiler-Leman
kernel or MPNNs, we investigate:

» When does more expressivity lead to a smaller margin?
» When does more expressivity lead to a larger margin?
Previous VC bounds depend on the dimensionality of the
feature space or the expressivity of the 1-WL

Let F be a finite set of graphs. For any

T, A > 0, we have,

» VC(H, /75, (Ew(n, d7))) € ©(7/x2) and

> VC(H ro s (Ew r{n. dr)) € (7))

for r = v/Tnand n > 7/x. We lift results to
MPNNs

Weisfeiler-Leman Optimal
Assignment Kernel

To study margin increases, we study the

1-WLOA

FwioalG. H) == >~ 3" min(ée(G)e, ée(H)e)
te[T]U{o) ce Xy

The VC bounds can be lifted to this case,

and pairwise distances have a useful

property:

The following two statements are equivalent,
1. || oilon#(6) — dhidons(H) | > [[6lloal6) — Aol
- || Pwioa.r PwLoa, F PwLoa PwiLoa
2. =(vte [TTu{o}Ve e X ¢n(G)e = dn(H)e
= ¥ € Cxlc): or(G)e = dre(H)e)

MPNNSs Converge to the Maximum Margin

Consider an MPNN, let W((t) be the trainable weight
matrix of layer i and & be the normal vector defining
the maximum margin, then under mild assumptions:
i W)W () - wi(t) N
oo [W) [l WEE e -~ - [[WOI(E)]¢
i.e., the weights of the MPNN converge to the maximum
margin solution.

Key-Insight

We show that the margin as a parameter can be used
to explain the generalization properties of expressive
WL-based kernels and MPNNs.

Increasing Expressivity via Subgraph Counts: the 1-WLr

() U
‘?(WEOAI(G) - C-”EM\].DA.‘F(H)“ Z

H‘Q{ROA(G) - <"’\E‘\Iﬂ'i"’\uh'l)|‘ ’

Lol L = {02

1. Label nodes with regard to a set of graphs F
2. Run 1-WL on top of the labeled graph

Experimental Study: Margin vs. Generalization Error
Partial Concepts for Graph Embeddings

LWL, LWLy WL, LWLy

» We consider the following set of partial concepts,
Ha(E(n,d)) = {h € {0,1,%}% | ¥Gy,...,Gs € supp(h):
(Gs. h(Gy)). (Gs, h(Gs)) is (r, \)-E(n, d)-separable }

Train - test accuracy [%)]
o W @

» We consider the class of graph embeddings obtained by . »la
the 1-WL feature map after T > o iterations or MPNNs, i.e., o e, . ol %o @ -
EWL(n-dT) . [G>—> u&m(a) ‘ Ge gﬂ} u_uw!in N 0.02 0.00 [M;r;.wlr‘u‘,\ 0.06 0.00 ”i:d‘-;rgm/\ 0.10

117

PREVIEW: Expressivity vs. Generalizability

[Franks, Morris, Velingker, Geerts — ICML '24]

* Consider linear classifiers
* Generalization error is characterized by the margin

* Address the question: When does expressivity lead to a larger vs
smaller margin?

* Extend theory of partial concepts ([Alon et al., FOCS’21]) to MPNNs to
get margin-based VC bounds

118

PREVIEW: Gradient Flow Convergence to Max Margin

[Franks, Morris, Velingker, Geerts — ICML '24]

* MPNNSs exhibit an "alignment" property
e Gradient flow pushes network weights toward the maximum margin solution

* Builds on results of [Ji and Telgarsky '19] x (i+1) _ W(’i-l—l)X(i)A!(G)

j = READOUT(XM)) =X . 1,

. wW (L) (t)W(L_l) (t) . W(l)(t)
t=oo [WE (@) || p[WED (@) - [WEH ()] 5

119

coe®

Over-smoothing and Over-squashing

ing,

Challenges for GNNs

Under-reach

Common origin of the problems

GNNs arise to leverage information on the graph topology to improve inference

HOW?
 Diffusion of information over the structure A
- Locality nature or Smoothness principle

* Repeated computation over X to reach information over the k-hop neighborhood Source- D. Zelle et al. GNNs in TensorFlow.
Google Research Blog. 2024

h(+D) — @ (h!,h) Random

Graph Diffusion

P=DA S = Z 0, T"
k=0
\ %

Lovasz 1993; Chung 1997; Kondor 2002
121

https://research.google/blog/graph-neural-networks-in-tensorflow/

Common origin of the problems

GNNs arise to leverage information on the graph topology to improve inference

HOW?
e Diffusion of information over the structure A

—> Locality nature or smoothness principle

* Repeated computation over X to reach information over the k-hop neighborhood Source- D. Zelle et al. GNNs in TensorFlow.
Google Research Blog. 2024

h(+D) — @ (h!,h) Random

Graph Diffusion

Difficulties P—_DA S =3 0,1
® Long range dependencies o
@ Heterophily _ J

@ Uneven location distribution of labeled nodes Lovasz 1993; Chung 1997; Kondor 2002
122

https://research.google/blog/graph-neural-networks-in-tensorflow/

Long-Range and Heterophily

Long-range 3D atomic
contact not captured by
the structure

[Dwivedi et al., 2022]

Long Range tasks depend on interactions between distant nodes
[Alon. et al., 2020]

123

Long-Range and Heterophily

Long-range 3D atomic
contact not captured by
the structure

[Dwivedi et al., 2022]

Long Range tasks depend on interactions between distant nodes
[Alon. et al., 2020]

Homophily metrics measure how the graph structure aligns with the nodes’ signals

Most widely used in the literature: based on 1-hop neighbors.

[Zhu, J., et al., 2020] [Pei, H. et al., 2019]

p) EE:y, =yl po oA N EN®):Y, =yl
edges IE| nodes V| L |N(v)|

H, (E) = {(w,v) EE:yyi Ny, = j} N ;z [h _@] ,_ Zvecl{u € N@W):iyy = 3}
/ (. v) € E:yy = 1} TS VA7 i Yvec IN)|

[Lim, D. etal., 2021]

124

r = problem radius

Problems briefly e .
o

k <7 k > r d Node’s receptive field increases

exponentially with k

O\ .
5 S
o .
o
o
o

125

REIETIN)
L (11 91

Under-reaching ©-0-0

Inability of nodes to be aware of nodes that are farther ” N
away than the number of layers k [Barceld 2022] ..

 Inability of information to propagate
further than k layers of the GNN [Alon 2022]

* Number of layers smaller than problem radius
e k<r

* rtypically grows with n 2 k dependent on the graph size

Solution
Stack k > r layers so information is exchanged among distant nodes

127

Over-smoothing
OSM

MR

‘e
4

WHAT

Over-smoothing

* When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

Z ‘hﬁ—hﬁ‘%@ask%oo

(u,v)EFR

[Convergence of the node embeddings as the number (k) of message passing layers increases]
29

WHAT

Over-smoothing

* When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

Z ‘hﬁ—hﬁ‘%@ask%oo
(u,v)EFR

* Conceptual origin of the problems: too much mixing

How information is mixed v
A) Connectivity of G
B) GNN architecture

How many times do we mix
(k layers)

[Convergence of the node embeddings as the number (k) of message passing layers increases]
30

WHAT

Over-smoothing

* When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

Z ‘hﬁ—hﬁ‘%@ask%oo
(u,v)EFR

* Conceptual origin of the problems: too much mixing

How information is mixed v
A) Connectivity of G
B) GNN architecture

How many times do we mix
(k layers)

* “Independent” of the problem radius

[Convergence of the node embeddings as the number (k) of message passing layers increases]
31

WHAT

Over-smoothing

* When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

1.0

(]

06

0.4

0.2

ACCURACY

0.0

Z ‘hﬁ—hfb‘%(}ask%oo

(u,v)EFR

Cora

\-k_\

-@- GCN ® -

GCN+InitialResidual \ \
- GCN+ldentityMapping (]
—A— GCNIl

21

Accuracy
=
Ee

0.2

0.0

Citeseer

E:-..._—A-—“b-::::A“"_'_“

m\\

GCN+InitialResidual

-l GCN+ IdenmyMappmg
—A— GCNIl

k-layers [Chenetal 2020] = k-layers

[Convergence of the node embeddings as the number (k) of message passing layers increases]
32

Measure

How do we measure Over-smoothing?

T

A l
» Other metrics suchas MADg(H') = Z Z 1- |i§i | ||h;z” |
UEV ueN,

* Consensus in using Dirichlet Energy of a signal on the Graph
[Chung, 1997; Cai et al 2020; Rusch et al 2023]

Ec(HY = Tr(H! LHY ! > fu P 2 \(/:z(a)rri]jorizlailtr;/egfsignal
\/du \/% 2 Hwrt G

Ea(H') = 1.66

133

How do we measure Over-smoothing?

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient (normalized DE) on G

Te(fTL
rot) — UL
1 f115
¢n =argming p 5) Ra(f)
E(Pn)
ho =) = s

Eigenvalues are the Rayliegh Quotient (normalized DE)

/ Recap on Eigenvectors [Chung, 1997] \

k of the eigenvectors of the graph (orthonormal functions that minimizes DE) /

Ea(HY) = Te(H LHY

134

Dirichlet

How do we measure Over-smoothing?

* Dirichlet Energy of a signal on the Graph
[Chung, 1997; Cai et al 2020; Rusch et al 2023]

2 C .
onstrained
N | T N I, hy L .
SG(H) — TT(H LH)) \/d_ — \/d_ variability of signal
u,vEE Y vil2 Hwrt G
= Dinichlet energy =~ =:==:= MAD £(H™) vs GNN depth
Rtat {|ENE|/|E)
. b —-@— 5.0e+06 (0.0)
> CD >' —&— 4.4e2+06 (0.005)
o0 - b0 —@— 3.9¢+06 (0.02)
QL) 'E) E —8— 3.3e+06 (0.05)
I e - -8 2.8e+06 (0.1)
< — GCN - C "Q\-_ :' —8— 1.82+06 (0.3)
L ‘~ LLl \ —@- 1.4e+06 (0.5)
| —— GAT (] ® 1.1e+06 (0.8)
GraphSAGE —® 9.3e+05 (1.0)
1 2 4 Elg_a:ﬂ'_-r l:rl;ﬁ 32 54 128 (I) é =II é é lID ll2 ll4 lI6

[Rusch et al 2023] ™ Ongoing work with Rishabh Anand

136

Why - connectivity

Reasons for Over-smoothing

Random Walk perspective: stationary (stable) distribution

 Over-smoothing as the stationary distribution = of a random walk in a Graph Connection with A,
[Chung, 1997; Spielman; 2018; Giraldo et al 2023]

_ -1 : R with Z — 1 Dictributi : T 1~k Distribution over nodes
P=D""A, f:V—=Rwit f(v) Distribution over nodes in G f P n G after k steps
v

limk_mofTP’~C =T —— Ty =

Converges to stationary distribution
(no feature information)

k=0 - f'P° k=0 - fTPO

Nodes Nodes

Why - connectivity

Reasons for Over-smoothing

Random Walk perspective: stationary (stable) distribution

 Over-smoothing as the stationary distribution = of a random walk in a Graph Connection with X,
[Chung, 1997; Spielman; 2018; Giraldo et al 2023]

P = D_IA, f:V — R with Z f(v) = 1 Distribution over nodes in G fTPk Distribution over nodes
v

in G after k steps

limy, oo f PP =7 —— m = S

Converges to stationary distribution
(no feature information)

*)\, denotes the rate of convergence - The higher the spectral gap, the faster the convergence to

max, v d,)

min, v/d,

[Apply RW smoothing J [The more connectivity, the higher J
138

|7 P =], < e tog

too many times = stationary point the rate of convergence

Why - connectivity

Reasons for Over-smoothing

Random Walk perspective: averaging network

 Over-smoothing as averaging network [Ghosh et al 2008] Connection with 12,,,,

* Discrete diffusion (heat) equation converges to the averaging network at infinite steps

d

£$ = —Lx, with solution z(t) = 6_tL$(0)
117
limy oo (t) = limy_yoce ™ 22 (0) = =0
n
N —oL _ —0L
k=0 - e “tx k=0 - e "X
0.15 0.15 +
'®© 010 8 o
T c
= o
N 0.05 t o005
0.00 0.00

Nodes Nodes

Why - connectivity

Reasons for Over-smoothing

Random Walk perspective: averaging network

 Over-smoothing as averaging network [Ghosh et al 2008] Connection with 12,,,,

» Discrete diffusion (heat) equation converges to the averaging network at infinite steps

d
%x = —Lx, with solution z(t) = e_tLiL’(O)
1172(0
llmt%oox(t) — hmt—)ooe_th(O) — CE()
n

* Rate of convergence
* A =diag(Ai, A2, ..., \,) determine the rate at which averaging takes place
* & =[¢1,Po, ..., ¢, are the mode of the system

* Time constant for ¢, to decay by a factor e
1

Y

» Total effective resistance is proportional to the sum of time constants = the lower, the faster convergence

n 1 n
Rtot — ZRU,,U :nkZZQ)_k :nkZ:sz

ur~vv

T,

140

Does this analysis answer the question?

GCN is augmented PX
heat diffusion process
W PXW Feature Transformation
20
O'(PXW) Non-linear feature transformation

O'(O'(PX)W) Non-linear aggregation

GCN(X,L) = o(o(---o(c(PX)WHIW2 .. YWF)

H times

141

Why - GNN

Reasons for Over-smoothing

GNN architecture perspective

* Over-smoothing in a GCN with feature transformation and non-linear activation functions (GCN) [Cai et al 2020]

P=D"2AD"% GON(X,L)=o(o(--o(o(PX)W" W2)W)

7

~
H times

* How does each component affect the DE between one layer and the next one? [Oono etal 2019; Cai et al 2020]

E(PX) < (1-M2E(X) EXW) < |[WTPeX) E£(0(X)) < EX) fo s

Structure Weight Activation
matrix

142

Why - GNN

Reasons for Over-smoothing

GNN architecture perspective

* Over-smoothing in a GCN with feature transformation and non-linear activation functions (GCN) [Cai et al 2020]

P=D"2AD"% GON(X,L)=o(o(--o(o(PX)W" W2)W)

7

~
H times

* How does each component affect the DE between one layer and the next one? [Oono et al 2019; Cai et al 2020]

E(PX) < (1-M2E(X) EXW) < |[WTPeX) E£(0(X)) < EX) fo s

* DE of one layer is upper-bounded by the previous layer DE [Zhou et al 2021]
* The upper bound depends on the graph connectivity and the structure of the weights

E(HR) < (1 —Xp)%sk _E(HF

Imax

L Square of maximum singular value of W*

143

OSM in Practice

OSM in GCN wrt aggregation function

C
ke,
i)

(®]

C

>
G4—

C
ke,
i)

(]

o0

Q

| -

o0

o0

©
2
<
Ll

DE converges per epoch and layer

o

Dirichlet Energy

o

o

o

Last Layer DE at last Epoch

101 5

107 4

1071 5

01
8 -
6 -
.44
24 N~
O -
20 40 60 80 100

T
21

T
22

T
23

T
24
GCN Depth

T
25

T
26

T
27

16
12 m
10 g
RS ¢
C \/'
: Epoch VS
i Layer DE
GCN Depth VS
Last-layer DE VS
1.0
Accuracy
0.8
0.6 g
; DE does not always
0.4 correlate with accuracy
02

Ongoing work with R. Anand

DE slightly converges per epoch
but explodes per layer

1015_
8 1012 TN ALAA
Q
& RO w” W
5 mmmmw
=
E 10l WA MIVAARAL
5 107 SSRGS AR
103,
e AR
‘ .
0 20 40 60 80 100

Q)
(0]e]
(0]e]
35 -
N D
(0]¢]
258 Q)
z —
204y 6'
15% 3
10 —
. C
)
(@]
(s
1015 1.0 O
< >
2 1013
& 0.8
"5," 1011 4
= 3
& 10° 0.6 g
[1_0? 4
[
£ 0.4
o 10° A
o
= 10° { ° P 0.2
T T T T
2! 22 2 2! 144
GCN Depth

Why - GNN

How is OSM manifested in practice?

GNN architecture perspective

e But... Main intuition of Laplacian smoothing (low-pass filters) only proven for

* non-linear ReLU or LRelLU
* Small weight matrices (measured by their singular values)

* No residual connections, no normalization, no for all aggregation functions...

* Dominant frequency explanation [Di Giovanni 2023, TMLR]

* Low-Frequency-Dominant (LFD) MPNNs When?
Eq(H” . _
lim G(k 2) N ‘/J/mm'()\max 1) < Hmax
k=oo || H |5 T
* High-Frequency-Dominant (HFD) MPNNs For S‘Imex
Eq(HF)
lim —— 2 5\ tmin| Amax — 1) >
2 n Hmin |\ Amax Hmax
koo ||HF||;

Small eigenvectors are
related to smoothing
Homophily

High eigenvectors are
related to sharpness
Heterophily

In principle, OSM is mitigated by choosing message passing functions that do not act as low-pass filters ;-

Solutions

REEEE s P airNoIm ------------------ .
A X :h X W XC 1 X
graph cony center rescale
* Normalization of node-embeddings 5 e
—_ - ' - ‘

Graph Sparsification

Regularization of weight matrix

Skip-connections

Change GNN Dynamics
e GAT, GraphSage
* Physics inspired GNN
* Adaptative GNNs

2. Aggregate feature information

from neighbors

Empirical review of some of the methods and tricks in Chen, et al 2022. “Bag of tricks” 147

Solutions to Over-smoothing

Normalization of embeddings
* Node embedding normalization techniques.

* Set distances to be constant throughout every layer in the GNN: PairNorm [Zhao et al 2020] or NodeNorm [Zhou et al 2021b]

—————————————————— PairNorm -------------mvo--
A X :l X XC 1 X
graph cony center rescale
— - o —2
B e ' > ‘
N SRR R
N N 1 N [Zhao et al 2020] cora-GCN
be X‘U, — E X'U 1.0 j gﬂ;l‘;l;rrﬂSl}
n iy _0.87
O \ -
~ Soe{ | T
o i
Xﬁ 204]
Xy, = 8\/% 02{ L./ >~
1X]3 -
0.0 -
2 10 20 30
Layer

* Also extensible to group-normalization: DGN [Zhou et al 2020]

Learn to maintain the node pair distance in the node batch or group

148

Solutions to Over-smoothing

Graph Sparsification

* To sparsify a graph reduces the spectral gap, therefore the rate of convergence of node features

1 1 1 d —1
R,, \ d, d,, [Lovasz 1993] max
Rayleigh Monotonicity principle Max degree lower bound of spectral gap
When removing edges of the graph, all R,,,,’s are equal or higher Sparser graphs = decreased upper bound

Sparser graphs > Higher R,,,,’s > decreased lower bound

149

Solutions to Over-smoothing

Graph Sparsification

* To sparsify a graph reduces the spectral gap, therefore the rate of convergence of node features

1 1 1 d —1
R,, \ d, d,, [Lovasz 1993] max
Rayleigh Monotonicity principle Max degree lower bound of spectral gap
When removing edges of the graph, all R,,,,’s are equal or higher Sparser graphs = decreased upper bound

Sparser graphs > Higher R,,,,’s > decreased lower bound

Strategies
e Random sparsification [Rong et al 2020]

* Drop different edges per feature
and learn it via posterior inference [Hasanzadeh et al 2020]

* Neural sparsification [zheng et al 2020]

150

Solutions to Over-smoothing

Skip connections

* Skip connections to alleviate information loss [Li et al 2019]

HY' = H' + o(PH'W) H' = H 4 o(PH'W)

151

Solutions to Over-smoothing

Skip connections and trainable weights regularization

» Skip connections to alleviate information loss [Li et al 2019]

H™Y = H' + o(PH'W) HY' = H + o(PH'W)

* Parametrized skip connection and identity mapping to reduce the singular values of W.
GCNII [Chen et al 2020] and EGNN [Zhou et al 2021]. Initial Residual connections also present in APPNP [Gasteiger et al 2018]

Cora

GONIL > g =0 (((1—a)PH' +aX) (1-AL,+pW)) =~ 0
Initial residual Identity mapping g ’ \ I
l e -@- GCN \. |
Reduce the norm and eigenvalues of W - : Eggimﬂaﬁe&f:pa-:‘s \o
S(Hk) S (1 _ A2)2S§1axg(Hk_1) : 3 2:Layersz‘v d

152

Solutions to Over-smoothing

Skip connections and trainable weights regularization

» Skip connections to alleviate information loss [Li et al 2019]

H™Y = H' + o(PH'W) HY' = H + o(PH'W)

* Parametrized skip connection and identity mapping to reduce the singular values of W.
GCNII [Chen et al 2020] and EGNN [Zhou et al 2021]. Initial Residual connections also present in APPNP [Gasteiger et al 2018]

Cora

GCN" 9 Hl+1 — O_(((1 L Od)PHl _I_ OfX) ((1 L B)In + BW)) >oa “TA?fﬁAﬂA—A
Initial residual Identity mapping g b \-‘

) . e A N

Reduce the norm and eigenvalues of W R e .

E(HY) < (1= Xa)*shaE(HF) JILE T

* Combine all hidden node embeddings at the last layer JKNet [Xu et al 2018] and DAGNNs [Liu et al 2020]

[Skip connections can enhance the High-Frequency-Dominant (HFD) MPNNs [Di Giovanni 2023, TMLR]

Advanced GNN Architectures

Change GNN Dynamics

= GraphSAGE [Hamilton et al., '17], GAT [Veli¢kovi¢ et al '17]

* Modify the dynamic of the GNN message passing sampling or
learning the messages to aggregate

1.8a mD' th orhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

= Physics informed GNNs (PDEs and ODEs) — Time-continuous dynamical GNNs

= CGNN [Xhonneux et al 2020], PDE-GCN [Eliasof et al 2021], GRAND [Chamberlain
et al 2021b], Neural Sheaf [Bodnar et al 2022], HKGCN [Zhao et al 21],
GraphCON [Rusch et al 22], GRAFF [Di Giovanni et al 22], BLEND [Chamberlain et
al 22], G-MHKG [Shao et al 23], FLODE [Maskey et al 2024]

= Adaptative GNNSs [Errica et al 2023] %3
= Learn the depth of the network during training O\O |

= Differentiable message filtering 2
Standard MP 8 12) Adaptlve MP (£= 1) Adaptive MP f—kﬁ“

Recap on Over-smoothing

* Theoretically proved to be caused by
» Stacking many layers
e High Graph conductance
e Structure of the trainable weight matrix

* If the architecture acts as a low-pass filter (LFD MPNNs) then there will be OSM

* Empirically, all the ML tricks (aggregation functions, normalization, self-loops, bias, skip-connections)
have a different effect on different graphs

* Mitigated by
e Sparsification
* Node embedding normalization and trainable weights regularization
e Skip-connections
e Changed GNN dynamics

155

OsQ

REIETIN)
L (11 91

Over-squashing

Over-squashing

Number of nodes in the receptive field increases exponentially with the depth

Neighbors in the k-hop increment exponentially with k

* How much does node u influences node v when considering all paths of length k?
if SP(u, v) = rin a binary tree, then: [Alon and Yahav 2021; Topping et al 2022]

Normalized connection ! O

A N
A= Dl/z(A + I)D1/2 Ay = 9 3= b strength between u and v

Compressed into fixed-size vector X; = N
* No longer sensitive in relative terms

Therefore, if there is bottlenecks in the graph, all information is compressed and
have to pass through that bottleneck = exponential compression

* Long-range fails X

158

Over-squashing

NeighborsMatch problem

/ S
W

/7~ \ N\
[Alon and Yahav 2021]
1 ..
. . . 5 JC0 [RN 1 ST 1 \ SRS SRS SRR S —
e Synthetic benchmark for controlling over-squashing 08|
. o H—— EL N NS
* Tree problem with controllable depth Ace 0.5 |- GGNN raim | \ g
0.3 [~ GAT rain) |\
* Training accuracy drops with depth B e [; |
: .
« Some types of GNNs more susceptible to over-squashing & r(fhepmb‘;em rad?ug) £ =
[]

+FA propose a Full Connected graph in the last MP layer Figure 3: Accuracy across problem radius (tree depth)
in the NEIGHBORSMATCH problem. Over-squashing
starts to affect GCN and GIN even at r = 4.

159

How to Measure Over-squashing?

How to measure the bottlenecks in the graph?

ity?
* Cheeger constant and bottleneck

[Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

* Effective resistance / Commute Times
[Arnaiz-Rodriguez et al '22 ; Banjeree et al ‘22;
Di Giovanni et al., '23; Black et al., ‘23]

* Jacobian (Sensitivity analysis)
[Xu et al '18; Di Giovanni et al '23; Black et al '23]

* Curvature (Balanced Forman, Ollivier)
[Topping et al '22]

* Hessian measure
[Di Giovanni and Rusch et al. '24]

160

Measures of OSQ

Cheeger constant, Spectral Gap and Effective Resistance

* Cheeger constant
measures the MinCut to disconnect the graph

0S8 = {e=(u,v):uc S,vecS}

05|

hs = min{vol(S), vol(S)}

hg = min hg
SCV

[Lovasz 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

161

Measures of OSQ

Cheeger constant, Spectral Gap and Effective Resistance

* Cheeger constant
measures the MinCut to disconnect the graph

0S8 = {e=(u,v):uc S,vecS}

05|

hs = min{vol(S), vol(S)}

* Cheeger Inequality

h2
7‘; < Ay < 2hg

[Lovasz 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

162

Measures of OSQ

Cheeger constant, Spectral Gap and Effective Resistance

* Cheeger constant
measures the MinCut to disconnect the graph

0S8 = {e=(u,v):uc S,vecS}

05|

hs = min{vol(S), vol(S)}

Cheeger Inequality

h2, Ao

Cheeger constant and Effective Resistance

1
Rmax S MG
h

[Lovasz 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

163

Measures of OSQ

Cheeger constant, Spectral Gap and Effective Resistance

* Cheeger constant
measures the MinCut to disconnect the graph

0S8 = {e=(u,v):uc S,vecS}

05|

hs = min{vol(S), vol(S)}

Cheeger Inequality

2 A
%GgAzgth 2

EShGg\/z)\Q

Cheeger constant and Effective Resistance

1
Rmax S MG
h

Spectral Gap and Effective Resistance
* Lovdsz Bound

1 1 2
Y -
R’Uﬂu (du dv) ‘ - /\Qdmin

e More ER-related bounds

1 2 n
— < Ry < —
7’&)\2_ ma_)\Q

[Lovasz 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

16

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?
Influence Score o) [Xu et al 2018; Hamilton 2020]

oh'Y)

x Pg i (u|v)

165

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?

Influence Score o) [Xu et al 2018; Hamilton 2020]
8h?0) x Pg i (u|v)
on!
min < r : ah(lo) # 0 p > 1o+ SP(u,v) Connection to under-reaching

[Gutteridge et al 2023]

166

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?
Influence Score e [Xu et al 2018; Hamilton 2020]

oh'%)

x Pg i (u|v)

* How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

som, v |(1OBY 1 on{™
R | Ay e

A node v self-sensitivity VS u->v sensitivity
from layer k features to layer m features

167

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?
Influence Score o) [Xu et al 2018; Hamilton 2020]

oh'Y)

x Pg i (u|v)

* How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

5(m) | 1 oni™ 1 on{™ 1 oh(™ L o™
SN G o Vit on) [\ @ on Vi on

A node v self-sensitivity VS u->v sensitivity
Same but reversed for v->u
from layer k features to layer m features

168

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?
Influence Score [Xu et al 2018; Hamilton 2020]

* How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]
(1 oh{™ 1 ahgm)> . (1 oh{™ 1 ahgm)>

j,({;m) (v,u) :==

L on® Vid on®) [\ @ o Vi on®

A node v self-sensitivity VS u->v sensitivity
Same but reversed for v->u
from layer k features to layer m features

Y
Symmetric Jacobian Obstruction:

Symmetric A self-sensitivity \/S pairwise sensitivity from layer-k’s features to layer-m’s features

169

Measure Over-squashing

Sensitivity between node embeddings

* How much do the original features of the u node affects the features of node v after m layers?
Influence Score [Xu et al 2018; Hamilton 2020]

* How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]
(1 oh{™ 1 ahgm)> . (1 oh{™ 1 ahgm)>

j,({:m) (v,u) :==

L on® Vid on®) [\ @ o Vi on®

A node v self-sensitivity VS u->v sensitivity
Same but reversed for v->u
from layer k features to layer m features

Y
Symmetric Jacobian Obstruction:

Symmetric A self-sensitivity \/S pairwise sensitivity from layer-k’s features to layer-m’s features

Obstruction after m layers

m
i o § : g(m S tric Jacobi
e Extension to m layers Om(u,v) = HJ](~€)(U’U)H ymmetric Jacobian
k=0 170

Measure Over-squashing

Sensitivity between node embeddings — Bounds

* How much do the original features of the u node affects the features of node v after m layers?
[Di Giovanni et al 2023; Black et al 2023] - Bounded by topology

ohy” - A ohy A N lized # paths of
|l < A < e (A", ormalized # paths o
6h£b0) B kl;[l el Toxll | (A7) 811,5,0) <c (A length r between u and v

171

Measure Over-squashing oo = 3 (G B -)

Sensitivity between node embeddings — Bounds

* How much do the original features of the u node affects the features of node v after m layers?
[Di Giovanni et al 2023; Black et al 2023] - Bounded by topology

ohy” - A ohy A N lized # paths of
|l < A < e (A", ormalized # paths o
6h£b0) B kl;[l el Toxll | (A7) 811,5,0) <c (A length r between u and v

 Jacobian obstruction and sum of pairwise jacobians = Bounded by ER

- Sk ony”
O™ (u,v) = Z ‘J,&m)(v,u)H <c¢ Ry © < c(b— Riot)
k::O u,vGV XV 8hu
The larger Effective Resistance is, The larger Total Effective Resistance is,
the higher the Symmetric Jacobian Obstruction the lower the sum of pairwise jacobians
[Di Giovanni et al 2023] [Black et al 2023]

Connection to what functions can be learned by a MPNN in [Di Giovanni et al 2024] 172

Solutions

GRAPH REWIRING

More:
- Multi-hop architectures
- Transformers

Virtual Nodes

Advanced GNN
Architectures

24 7 2 3 7
Adaptive MP (£=1) Adaptive MP (£=2)

*

il;.__a

- Adaptative

- Transformers

- Advanced Spectral Filters

- Physics-Informed Methods

Figures from Topping et al 2022, Arnaiz-Rodriguez et al 2022, Errica et al 2023, Geisler et al 2024

174

Graph Rewiring

* Change the edges of the graph such that message passing mechanism is affected

R(G) = (V,R(F)) h(+D) — ¢ | 1! @ " (hl hl)
Y = GNN(R(G)) (u,v)eR(E)

long-distance nodes distant and relevant nodes

175

Graph Rewiring
* Change the edges of the graph such that message passing mechanism is affected

R(G) = (V,R(F)) h(+D) — ¢ | 1! @ " (hl hl)
Y = GNN(R(G)) (u,v)eR(E)

long-distance nodes distant and relevant nodes

* Spatial vs Spectral

Spatial diam(R(G)) Spectral hrc) = ha Both Reduce
Add edges within a) Add edges based on a global the ER of G
certain k-hop (locality) = diam(G) spectral measure (connectivity) ot (R(G)) < Riot(G)

[Di Giovanni et al 2023]

176

Graph Rewiring

* Change the edges of the graph such that message passing mechanism is affected

R(G) = (V,R(E)) hO+D) = 6 [1! @ " (hl hl)
Y = GNN(R(G)) (u,v)eR(E)

* Spatial vs Spectral

Spatial diam(R(G)) Spectral hrc) = ha Both Reduce
Add edges within a) Add edges based on a global the ER of G
certain k-hop (locality) = diam(G) spectral measure (connectivity) ot (R(G)) < Riot(G)

[Di Giovanni et al 2023]

« Static vs Dynamic ’R,t(G) = (V, Rt(E))

Nodes do not always interact with the same delay [Gutteridge et al 2023]

177

Graph Rewiring

* Change the edges of the graph such that message passing mechanism is affected

R(G) = (V,R(F)) h(+D) — ¢ | 1! @ " (hl hl)
Y = GNN(R(G)) (u,v)eR(E)

long-distance nodes distant and relevant nodes

* Spatial vs Spectral

Spatial diam(R(G)) Spectral hrc) = ha Both Reduce
Add edges within a) Add edges based on a global the ER of G
certain k-hop (locality) = diam(G) spectral measure (connectivity) ot (R(G)) < Riot(G) [Di Giovanni et al 2023]

* Static vs Dynamic Rt (G) = (V, Rt (E)) Nodes do not always interact with the same delay [Gutteridge et al 2023]

* Pre-processing vs In-processing (differentiable and data-driven) [Arnaiz-Rodriguez et al 2022]

Y =GNN(G) =---R(G) - - Rewiring is learned during the GNN training

178

Graph Rewiring

Spatial vs Spectral

dlam(R(G)) Rtot (R(G)) < Rtot(G)
< diam(G)
SPATIAL SPECTRAL
Spatial Spectral
Add edges within a certain k-hop (locality). Also, multi- Add edges based on a global spectral measure
hop architectures (4%) and transformers (full connected) (connectivity)
X Need for very dense graphs to solve 0SQ L Preserve sparsity
| Preserve locality ¢ Does not maintain the locality information

Figure from [Barbero et al 2024]
179

Graph Rewiring

Spatial vs Spectral

Spatial Spectral
Rewiring:
Rewiring: Based on PageRank smoothing: DIGL [Gasteiger et al 19]
Based on Curvature: SDRF [Topping et al 22]
Based on random edges: G-RLEF [Banerjee et al 22] Learnable Effective Resistance: DiffWire (Data-driven

rewiring) [Arnaiz-Rodriguez et al 22]
High-order networks:

SPN [Abboud et al. 22], Mix-Hop [Abu-El-Haija et al 19], Increase approximately 4,: FOSR [Karhadkar et al. 22]
H2GNN [Zhue et al 20], DHGR [Bi et al 22],

DRew [Gutteridge et al 23], GREET [Liu et al 23b] Cayley expander graphs: EGP [Deac et al. 22]
Transformers and Positoinal Encodings (PE): Precomputed Effective Resistance: GTR [BIaCk et al 23]
PE [Briiel-Gabrielsson et al 23], Graphormer [Ying et al,

'21], SAN [Kreuzer et al, '21], GraphGPS [Rampasek et al, Spatio-Spectra'

'22], Exphormer [Shirzad, Velingker, Venkatachalam et al, LASER [Barbero et al 2023]

=l Spatio-Spectal GNNs[Geisler et al 2024] — GNN

180

Graph Rewiring

Spectral VS Spatial

m NG
m— RecSys

MEAN ISOLATION

T T
0.0 25 5.0 1.5 10.0 12.5 15.0 17.5 20.0

181

Spatial Rewiring - Curvature

SDRF [Topping et al 2022]

O ¥

- ol

182

Spatial Rewiring - Curvature

SDRF [Topping et al 2022]

183

Spatial Rewiring - Curvature

SDRF [Topping et al 2022]
* How to identify bottleneck? Edges with lowest Ricci Curvature (Balanced Forman as lower bound)
.. . —1
2 2 |#A(Zaj)‘ ‘#A(Za])l (’Ymax)

ofi i) e 242 ot (i ‘JD
Rie(7, j) d@'+ j ” maX{diadj}—l_min{diadj}—l_max{diadj} ‘#D‘Jr #h

* How to fix bottlenecks? Add edges around edges with low curvature
1. ldentify edge e,,;, with lowest Ricci Curvature

2. Add edge between 2 (k, I) neighbors of the endpoints e,;in
sampled with probability proportional to the improvement of the curvature of e,,;,, after adding (k, l)

3. Remove edge e, x With highest Ricci Curvature

184

Spectral Rewiring — Differentiable

DiffWire - Background

[Doyle and Snell, 1984] [Qiu and Hancock, 2006]
R, — zn: 1 (cbq;(U») B M)Q Z = \Jvol(G)A~Y/2FT given L = FAFT
v \Va, Vi,
- Tr[ZTL;Z]
Ry = (e — ;)" LT (e — &) 4=arg st 2171 Tr[Z"DZ]

CT(u,v) = ”Zu - zv”%

CT(u,v) = H(u,v) + H(v,u) :

- CT(u,v)
~ vol(G)

Ru,v

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver,
DiffWire: Inductive Graph Rewiring via the Lovasz Bound. In The First Learning on Graphs Conference, 2022.

185

Spectral Rewiring — Differentiable

DiffWire — CT Layer

. Tr[Z"L;Z]
. . Z = arg min =

* Learn to rewire in a GNN layer sit.2T2=1Tr[ZTD;Z]
* Differentiable pipeline _ 2
* Data-Driven CT(w,v) = ||z — Zyll3
R _ CT(u,v)

« GNN Layer learns the Commute Time Embedding between nodes Y yol(G)

(therefore, it learns the Effective Resistance distance)

* Modifies the message passing (adjacency) using the learned CT - prioritized edges between nodes at large CT

Original CT-LAYER

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver,

DiffWire: Inductive Graph Rewiring via the Lovasz Bound. In The First Learning on Graphs Conference, 2022. 186

Spectral Rewiring — Differentiable

DiffWire
T T
_ rHZTL.Z] Tr[ZTLZ] 7'7
_ 1/2gT — _
VVOU(GATFT = Z=arg min =T 7] " Ler = rZ'0z) * |[1Z7Z0F I F

Use Effective Resistances

cdist(Z) matrix (commute times) to
nxoMn) —p CT nXxXn _ CT p
€R T R —~ OA|*>T modify the input adjacency
vol(G) 1

matrix for new layers

CT-layer can be added as the first
layer or as the # desired layer

r[ZTLZ] “ 777
|

L = — 1
T~ Tr[ZTDZ] YAV

F

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver,

DiffWire: Inductive Graph Rewiring via the Lovasz Bound. In The First Learning on Graphs Conference, 2022. 187

Spectral Rewiring — Differentiable

DiffWire

. ZTLZ YAY/
v = Trizioz) | |izvz,

F

CT as diffusion matrix

X % Z € R0 CT as edge features

CTE as differentiable Positional Encoding

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver,
DiffWire: Inductive Graph Rewiring via the Lovasz Bound. In The First Learning on Graphs Conference, 2022.

188

Spectral Rewiring — Differentiable

DiffWire

CT learned by CT-Layer as diffusion matrix

MinCutPool k-NN DIGL SDRF CT-LAYER
REDDIT-B* 66.5314.4 64.4043.8 76.02443 65.31£7.7 78.45445
IMDB-B* 60.754+7.0 55.204+4.3 59.354+7.7 59.2469 69.84 146
COLLAB* 58.0046.2 58.33411 87.51459 56.60410 69.871+24
MUTAG 84.2146.3 BT7.58+4.1 85.0045.6 82.4168 87.581+44
PROTEINS 74.84423 76.76425 74.4942.8 74.442.7 75.38429

CTE learned by CT-Layer as differentiable Positional Encoding

Dataset GCN (baseline) model 1: model 2:

X|[[Z A=TCST Homophily
Cora 82.01+08 83.66 1006 67.96 103 81.0%
Pubmed 81.61+03 86.07 101 68.19+107 80.0%
Citeser 70.81105 72.26 105 66.71 106 73.6%
Cornell 59.19435 58.02437 69.04 122 30.5%
Actor 29.59104 29.35104 31.98:03 21.9%
Wisconsin 68.05162 69.2545.1 79.05412.1 19.6%

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver,
DiffWire: Inductive Graph Rewiring via the Lovasz Bound. In The First Learning on Graphs Conference, 2022.

PE for homophily
Diffusion for heterophily

189

Curvature and Effective Resistance

Connection of curvature and Effective Resistance [Devriendt and Lambiotte, 2022]

* Direct connection for node and edge curvature [Devriendt and Lambiotte, 2022]

1 2(pu +

Pu — 1 — 5 Z Ruv Ruy = (p},,% pv)
veN (u) uv
Node Curvature Edge Curvature

* Direct connection with node bottleneckedness [Arnaiz-Rodriguez et al 2024]

Node bottleneckedness

Arnaiz-Rodriguez, A., Curto, G., & Oliver, N. (2024).
Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance. In TrustLOG Workshop at WWW 2024.

190

AN
|
N
D[
AN
N
DO |

Spectral Rewiring

FOSR [Karhadkar et al 2022]

* Estimate the change of 4, after edge (u, v) addition

2 du v
P2(w)¢2(v) 2002 (u)” <—" — 1) + 2Xa¢2(v)? (vdy 1)
V1+dyv1+d, V1+d, 1+d,
* Goal: minimize the dominant term
1. Approximate 1, via power iteration FOSR
N t d
E—I_l%Agbg_(27\/7>\/g

2m
2. Choose edge that minimizes the dominant term SDRF

191

Spectral Rewiring

GTR [Black et al 2023]

* How much adding a specific decreases Ry, ?

* Biharmonic Distance [Lipmanetal., 2010]

Bu =/ (ei — eg)T(L*)*(es — &)

* Proportional to the partial derivative of the total

resistance with respect to the weight of the edge
[Gosh et al., 2008]

8[1)1301: o 2
8wuv - _nBu'v
B2
Rtot(G) — Rtot(G U (U, TJ)) =n- ﬁ

RuvV(u, v EVYXYVY

193

GTR and FOSR

[] L] \ L] -
L] L]
b . 46000 B .
--'- T2, -." 9, %,
had L] . L]
. =
.« @ % -
. _ 00 a &d
[] L] ™ -
> - 2 [] & - > []
. o - . . 44000 : ! e . .
» .]
L] L
L . [N - - . . . Y
. ." . ' : L -o . = :'
L] [] - ® - -
: v L '. 42{]00 i : Ll ..
» Tanign. : » Fanise @ .'
. '] . 1]
:' . a® - :' - (] -
L] []
v .-. " R ‘ L ..u' [] & *
. A 40000 ', o
o a
* e e @
IR000 T T T

T T T T
7.5 10.0 12.5 15.0 17.5 20,0

-

0.0 2.5 5.0

Number of added links

194

Spatial Rewiring - Dynamic

Drew [Gutteridge et al 2023]

* Closer nodes should interact earlier in the architecture

* Rewire to modulate not only if nodes interact, but also when.

(¢) vDRew

196

Spatial Rewiring - Dynamic

Drew [Gutteridge et al 2023]

* Closer nodes should interact earlier in the architecture

* Rewire to modulate not only if nodes interact, but also when.

* Multi-hop rewiring that evolves during the layers.
Nodes interact from a certain depth
(Hop l+1 is only aggregated in layer l)

v
o) = AGGL ({00 < j € i)

+1 14 14 14
p T = up (1, alf). .

Nodes interact with Delay

(nodes interact with previous states)

Delay for each hop to interact with
the previous states of the nodes

1

o,

Separate aggregation for
each k-hop neighborhood

14) /
(, 3 1 Hop l + 1isonly
2, aggregated in layer [

A <E<l+1

(¢) vDRew

197

Spatio-Spectral Rewiring

LASER [Barbero et al 2024]

SPATIAL

Spatial
Add edges within a certain k-hop

2{ Dense nature

L Preserve locality

SPECTRAL LASER
Spectral LASER
Add edges based on a spectral measure
L Preserve Sparsity L Preserve Sparsity
2 Override locality information L Preserve locality

198

Spatio-Spectral Rewiring

LASER [Barbero et al 2024]

* Use a sequence of rewired graphs (€ snapshots)

* Successive "local" modifications

R Ro RL
G=Gy—> Gy — -+ — G,

(v,u) € Eg if (IJ’GO (v,u) < € and vg,(v,u) € Ig) or (v,u) € Ep_q.

Connectivity threshold
Connectivity measure
L:VxV->R

Locality restriction
Locality measure
v:VxV >R

LASER

L Preserves Sparsity

L Preserves locality

199

Other Rewiring Flavors

Beyond pure Spatial or/and Spectral : e
e Sampling: GraphSAGE [Hamilton et al., '17],
GAT [VellékOVIé et al '17] 1. SBWD‘GWEI;ZDOFhDOG 2. Aggregate fea}rurﬁlnformatwon 3. Predict graph codntext and label
from neighbors using aggregated information

Original Graph Expander Graph Global Sinks
. -Preserves locality ~ -Constant degree -“Storage sink”

L4 G ra p h t ran Sfo rmers Wlt h P E : G ra p h ormer -Random wilk mixing -Short pafrwisi connections
[Ying et al., '21], SAN [Kreuzer et al., '21], GraphGPS // —o /:/'\'\
[Rampasek et al., '22], Exphormer [Shirzad, Velingker, . 7 §1\ |/
Venkatachalam et al., '23] A N

* High-Order and Hierarchichal GNNS: Mix-Hop 75
[Abu-El-Haija et al '19], H2GNN [Zhue et al '20], . : :
DHGR [Bi et al 22],)

202

Open problems for Graph Rewiring

Blind to the downstream task

Focus on addressing OSQ while potentially introducing OSM

Fail to answer how much rewiring is necessary to do

Most of them pre-processing approaches = task-agnostic and non-learnable

v

-
--_—---—-__—

203

Virtual Nodes Aon = [ff 3]

* Add new nodes that serve as a global attention shortcuts [Scarselli et al 08; Pham et al 17]

* How many nodes dowe add? + How do we connect existing nodes to virtual ones?

* One global node * All-to-one
* Many-to-many

e Several virtual nodes

* Application to transformers = memory sinks [Cai et al 23; Shirzad, Velingker, Venkatachalam et al., 23]

. - |
emb\élc\llding hf{*g*‘l) o (Q(F) h(*(”) +| = (/)5*:;) (hf,i) : ’JSP))) | Mean node aggregation

vn vn 'ﬁ, .
J=1

7 vn 1

p+Y — o (n(*’f)h,ﬁ“ +3 A O (0D 1) Held (ng Rl))

1=1

Update for node embedding

204

Virtual Nodes

* Add new nodes that serve as a global attention shortcuts [Scarselli et al 08; Pham et al 17]

* How many nodes dowe add? ¢ How do we connect existing nodes to virtual ones?

* One global node * All-to-one

* Several virtual nodes * Many-to-many

A 1

Am =117 g

» Application to transformers = memory sinks [Cai et al 23; Shirzad, \Velingker, Venkatachalam et al., 23]

Why virtual nodes are beneficial?

Average change in commute time

1 T
— Z CTyn(u,v) — CT(u,v)

u,veV

* For many real-world graphs, the change is negative
(exception e.g. in complete graphs)

* On these, the # layers required by MPNN + VN to learn graph
functions with strong mixing is smaller than that of MPNN

Sensitivity

For MPNN + VN with mean node aggregation
for the embedding of the virtual node VN

ohit)

oh'Y

Independent on of v whenever u and v are separated
by more than 2 hops

Any message is first received by node at layer € + 1
through the VN

[Southern et al 2024]

205

Advanced Architectures e pore |

Adaptative Architectures

Adaptative Message Passing [Errica et al 24]
learn the optimal depth and filter messages dynamically

» Differentiable message filtering mechanism decides what to propagate
at each layer

* Decides what to propagate at each layer

hy = ¢ (P 0 ({Fi(u, € = 1) © 9 (hy F ag,)|u € N }))

Standard MP (£=1,2)

\ node 1 node 2 node 3
11 I 11 11

12 L 12 E 12 L
node 4 node 5 node 6 node 7

IL—L» 1U—0—> U—o—» Ho—»
12 L 12 L 12 L
5

1

O\O

2 3
Adaptive MP (£=1) Adaptlve MP
206

Advanced Architectures e pore |

Adaptative Architectures

5 6
Adaptative Message Passing [Errica et al 24] 1
learn the optimal depth and filter messages dynamically 4
» Differentiable message filtering mechanism decides what to propagate 2 3 7
at each layer Standard MP (£=1,2)

* Decides what to propagate at each layer

hy = ¢ (P 0 ({Fi(u, € = 1) © 9 (hy F ag,)|u € N }))

\ node 1 node 2 node 3
1‘ I 1’ 11

12 L 12 E 12 L
node 4 node 5 node 6 node 7

* Dynamic adjustment of network depth 1 1 1 1{1

e Learn depth using varlat|<.)nal Inference . 3 ~=% 1% TR s
* how many message-passing layers are required for a specific task? : ’ : 2

Inp(gi, Ys) .g

4
> Ey0,10,F,19:,v,) Inp(Ys, L, F,0]g;) — Inq(L, F;, 0]g;)] M (2) - (7)
Adaptwe MP (€=1) Adaptive MP (£=2)

207

0OSQ Take-away

Over-squashing is caused by bottlenecks in the graph

Measured by spectral quantities and by the Jacobian obstruction

Obstruction is bounded by the topology and it’s independent of the GNN

Solutions
= Rewiring (spatial vs spectral, static vs dynamic, pre-processing vs learnable)
= Virtual nodes

= Different architectures for diffusion in graphs
= Multi-hops, Adaptative, Physics-informed, Spectral, Transformers...
= Note: Some approaches are combined (e.g. global nodes+ rewiring, multi-hop + rewiring...)

208

Trade-off between OS

Trade-off between OSM and OSQ.

A comparison of the bounds

Y maxvx/a
%2 <he < VN 177 =l < =V tog (e

The lower 4, = the higher the bottleneck = the more 0SQ
: : E(PX) < (1— 2)?E(X)

The higher 4, - the faster convergence—> the more OSM

210

Trade-off between OSM and OSQ.

A comparison of the bounds

A2
5 = ha < V22
The lower 4, = the higher the bottleneck = the more 0SQ

on'r

< c(b— Riot)
0
u,veV xV ah&)

The higher R,,;—~> the lower the bound of sum pairwise
sensitivities = the more 0SQ

T
CY”(U,U)::EE:
k=0
The higher R,,,,~> the larger the pairwise obstruction
- the more 0SQ

‘j,(gm)(v,u)H <c Ry,

7P — < e 1o (Lo VL)

min, v/d,,
E(PX) < (1= Xo)?E(X)

The higher 4, - the faster convergence—> the more OSM

117
limy—yoez(t) = limy_ooe 2 2(0) = ﬂ
n
1
T, = —
k A
mn 1 n
Bue =Y Ry =nY_ 5 =3 1
u~v k=2 k=2

The lower R;,; = the faster convergence—> the more OSM

211

Trade-off between OSM and OSQ.

Good to mitigate over-smoothing Risk of over-smoothing

Risk of over-squashing Good to mitigate over-squashing

212

Trade-off between OSM and OSQ.

Layers needed for feature collapse vs Cheeger constant

* The bottleneck of the graph is upper bounded by the inverse of the number of steps needed to
reach at most e-feature collapse [Giraldo et al 2023]

1
T pk s>
Hf P _WHQ S € ! Xlog(ma_xvx/dm)
e-feature collapse €eming Vdy

Difference of signal f and T at most € s is the number of steps to reach e-feature collapse

214

Trade-off between OSM and OSQ.

Layers needed for feature collapse vs Cheeger constant

* The bottleneck of the graph is upper bounded by the inverse of the number of steps needed to
reach at most e-feature collapse [Giraldo et al 2023]

1
T pk s>
Hf P _WHQ S € g Xlog(maxvx/dm)
e-feature collapse €eming Vdy
Difference of signal f and T at most € s is the number of steps to reach e-feature collapse

1 max, v/ d,
2hg < —log :
S € IMin,, v/ du a) Stochastic Block Graph with 2 Clusters

5001 | Mixing steps 0.20

. . . 400
Avoid OSM making the signal to never converge

- Cheeger constant is 0 .

€)

Bottleneck |

s —>00<= hg —0

21300

A

(

f

200

Avoid OSQ making the bottleneck large 100
- small steps for e-feature collapse

hag —>o00<=s—0

0 1000 2000
Removed/Added Edges
215

Trade-off between OSM and OSQ.

Solutions and Analysis

= Relational GNNs
= FOSR [Karhadkar et al 22] and LASER [Barbero et al 24].

= Curvature Methods
= SJLR [Giraldo et al 23] adds and remove edges and analysis of trade-off in the spectral domain.

= BORF [Nguyen et al 23] adds and remove edges with low and high curvatures (solving 0SQ and OSM) resembling an expander.
They connect of curvature with the DE and with Jacobian.

= AFR-3 [Fesser and Weber, 24] propose a heuristic to choosing how many edges to add in curvature methods.
They connect OSM and OSQ with augmented Forman curvature.

= CurvDrop [Liu et al 23] sample edges based on curvature to mitigate OSM and OSQ.

= Spectral

= ProxyDelete [Jamadandi et al 24] analyze that deleting edges can address OSM and OSQ simultaneously.

= UniFilter [Huang et al 24] propose a general graph filter based on a universal polynomial basis tailored for different
heterophily degrees

= More

= Adaptative Message Passing [Errica et al 24] propose a probabilistic framework to learn how many messages to exchange

between nodes (GNN depth) and which messages to filter out to prevent feature convergence and increase feature
sensitivity.

= [Southern et al 24] compares virtual nodes with smoothing techniques and over-squashing measures. 216

B e

R w

RPN)w‘.,

Open Questions on OSM

x1

It is not always correlated with the accuracy... Is it really a problem of GNNs? Not the only one
= Role of real world GNNs and training process? Mitigated even with gated GCNs or relational GCNs

Is OSM always a problem? Not too little, not too much (focus before k —)
= Graph CLF = beneficial smoothing is desired if it is alighed with the task
= Node CLF = For homophily some OSM is desired! [Keriven 2022]

x0

x0

x0

] (|
[OSM happens faster in some subspaces than in others] =l Useful if labels are correlated with those subspaces
0100 ww 0.100 0.100 275
0.075 4 0.075 0.075 2.50
0.0s0 0.050 0.0501 225
0.025 0.025 % ¢ ¥: 0.025 1
: - o X5 W 2.00
0.000 1 % 0.0004 : 2 e % 0.0004 - g y 9%
. A
005] -0.025 1 da, " ~0.025 4 150
0 og e ¢ 050 ‘.‘ ¢ 050
0050, ° 0.050 1 B ~0.050 1 125
~0.075 <3 ~0.075 1 -0.075 1 100
~0.100 - ~ - ~0.100 - ~0.100 - — -
010 004 -00 000 002 0.04 T 0.02 0.00 0.02 0.04 0.06 o102 04 -0o0 0.00 0.04 0.06 10° 10 1w
%0 x0 x0 Order of smoothing
0.04 0.04 4 13
oy 0.02 0.02 4 12
& 2 ..ﬁ"'. *e w 11
. , v
~.‘9 % 0,00 *s '-' ’g.*.:; ¢ < 0.00 ’J - g‘
- o g ¢ . 104
~0.02 1 -0.02
09
-0.04 ~0.04 1
o8 - + -r
-0.04 -003 -002 -001 000 001 002 003 004 005 -0.04 -0.03 -0.02 -001 000 001 002 003 004 QOS -0.04 -0.03 -0.02 -0.01 000 001 002 003 004 005 5 10t 10%

Order of smoothing

Open Questions on OSQ

» Bottleneck vs Sensibility — How do they measure OSQ? Are we identifying information bottlenecks?
/\2 =0.05 and Rtor =819 /\2=017 and Riot =514

A, increases and R;,; decreases, cool! But... Is 0SQ Solved?

219

10 A

Open Questions on OSQ

» Bottleneck vs Sensibility — How do they measure OSQ? Are we identifying information bottlenecks?

Average Ry, per node

/\2 =0.05 and Rtor =819

Normalized Avg Ry, per node

mm G
B H

50 60 70 80 0
Seems to work very well but...

| o G f
| 777 H N :f
N v
s s S\ %

Becomes extreme

10.0 4

7.5 4

5.0

2.5

/\2 =0.17 and Riot =514

A, increases and R;,; decreases, cool! But... Is 0SQ Solved?

Bottleneckness = -2(Node curvature-1) Betweeness
mm G o N\ G
H ol v/ H
| 5
] . o0 xx

0.0

T T
5 10 15 20 25 30

Becomes extreme

T
35

T
40

T
0.0

T
0.1

D.IZ 0.I3 228:4
Does not change

0.5

Open Questions on OSQ

* Are we properly measuring which graphs suffer from task-relevant over-squashing?

* Bottleneck vs Sensibility measures are independent of the label of the nodes — Measures blind to task (labels)
* Prior work connection of 0SQ with the function that MPNN seek to learn [Di Giovanni et al 2024]
* Homophilic bottlenecking: analyze combined effect of heterophily and over-squashing [Rubin et al 2023]

e 0SQ datasets are currently measured with heterophily metrics — Heterophily is not the same as long range!

m 1-hop

] m — 1 n—3J3

: l _
O_‘ ‘ . o e ‘ ‘ O hedge = n—1 n—1 Homophilic but long-range

m—0o0 __ 1
edge

hedge =0
max(d(u, v) : Yy = Yy) = 2

Heterophilic but short-range

* Most OSQ mitigation strategies are task-agnostic and non-learnable 221

Open Questions on OSQ

Beyond Heterophily - How does the structure align with the labels?

* K-hop homophily metrics. High-order homophily. [Homophilic signals have higher energy 1

* Spectral metrics in low frequency components

» Graph Fourier operator. Project ¥signal in the spectral domain.

]—"(a:) _ nga: [Zhu et al 2020; Luan et al 2024]

Heterophilic signals have higher energy
in high frequency components

Frequencies of the label signal Frequencies of the label signal Frequencies of the label signal Frequencies of the label signal
154 2.0
2.0 tol 15 201
15 1 0s 104 151
1.0 . 054 104
0.5 o5 00 0.5 A
0.0 0.0 |
,,,,,,,,,,,,,,, -o+ 5 ——
MAmYno~OogoNMINENE YR LN - T R R ANmMYnoroogONNINENR] MMmMTnor@agaNNYYERYE
G frequencies (eigenvectors) G frequencies (eigenvectors) G frequencies (eigenvectors) G frequencies (eigenvectors)

* More discussion about homophily in [Zhu et al 20; Qian et al 21; Luan et al 22; Ma et al 22; Huang et al 24; Luan et al 24; Zheng etal 24] 55,

Underlying problem: Probability distribution of G

Graph
Topology

A |
Homophily

P(G) Heterophily
P(V,A,X,Y)

Node Node

s the structure he pPTUul:
X Y

(A L X|V)?

Biased
Topology

Survey on Deep Graph Generation [Zhu et al 2022]
Survey on Graph Structure Learning [Zhu et al 2021; Luan et al 2024]

Survey on Causality on GNNs [Jiang et al 2023] .-

Conclusions OSM and OSQ,

* OSM -2 Feature convergence to not expressive
* Dirichlet Energy-based measures
* Due to network depth and graph density
* Solutions based on feature normalization, graph sparsification, W normalization and time-continuous GNNs

* 0SQ - Exponential compression of nodes’ features into fixed-length feature vectors

* Measured by
* Feature compression > Existence of bottlenecks in the graph
* Feature Sensitivity = Interaction between nodes’ features

* Solutions based on graph rewiring, virtual nodes or adaptative architectures

» Trade-off 2> Both problems are connected

224

Recap on open questions

* OSM
* Extend OSM analysis to real world GNNs... Is it really a problem on GNNs?
* Accuracy drops even with high DE’s
* |s over-smoothing always bad?

* Task-oriented over-smoothing Assumption of analysis

Long Range

* 0SQ
* |dentify differences between bottleneck analysis and sensitivity
* Do both happen at the same time?
* Task-oriented Over-squashing
* might not be always bad

e Alignment of structure, features and labels
* Currently: homophily. But homophily not is long range

* What is the probability distribution of a graph/s?

225

More recent work

= |ICML24
= https://github.com/azminewasi/Awesome-Graph-Research-ICML2024 (’
= |CLR24
C _ _ _ azminewasi
= https://github.com/azminewasi/Awesome-Graph-Research-ICLR2024 Azmine Toushik Wasi

=" LoG Conference

= Sept 4th Abstract Deadline
= Sept 11th Submission Deadline

CONFERENCE

226

https://github.com/azminewasi/Awesome-Graph-Research-ICML2024
https://github.com/azminewasi/Awesome-Graph-Research-ICLR2024

References

Abboud, R., Dimitrov, R., & Ceylan, I. I. (2022, December). Shortest path networks for graph property prediction. In Learning on Graphs Conference (pp. 5-1). PMLR.

Abu-El-Haija, Sami, et al. "Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing." international conference on machine learning. PMLR, 2019.

Alev, V. L., Anari, N., Lau, L. C., & Gharan, S. O. (2018). Graph clustering using effective resistance http://drops.dagstuhl.de/opus/volltexte/2018/8369.

Alon, U., & Yahav, E. (2020). On the bottleneck of graph neural networks and its practical implications. In ICLR 2021.

Arnaiz-Rodriguez, A., Begga, A., Escolano, F., & Oliver, N. (2022). Diffwire: Inductive graph rewiring via the Lovasz bound. In the First Learning on graphs (LoG) Conference 2022.
Arnaiz-Rodriguez, A., Curto, G., & Oliver, N. (2024). Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance. In TrustLOG Workshop at WWW 2024.

aBﬁg%&FrﬁbEt#fg Ifxrlg?%(ﬁ)r’(giﬁ.vfgﬁ.glgEEG." Alon, U., & Montdufar, G. (2022, September). Oversquashing in gnns through the lens of information contraction and graph expansion. In 2022 58th Annual Allerton Conference on Communication, Control,

Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni, F., Dong, X., & Bronstein, M. (2021). Beltrami flow and neural diffusion on graphs. Advances in Neural Information Processing Systems, 34, 1594-1609.

Bi, W., Du, L., Fu, Q., Wang, Y., Han, S., & Zhang, D. (2022). Make heterophily graphs better fit gnn: A graph rewiring approach. arXiv preprint arXiv:2209.08264.

Black, M., Wan, Z., Nayyeri, A., & Wang, Y. (2023, July). Understanding oversquashing in gnns through the lens of effective resistance. In International Conference on Machine Learning (pp. 2528-2547). PMLR.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Lio, P., & Bronstein, M. (2022). Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. Advances in Neural Information Processing Systems, 35, 18527-18541.
Briel-Gabrielsson, R., Yurochkin, M., & Solomon, J. (2022). Rewiring with positional encodings for graph neural networks. TMLR 2023

Buchnik, E., & Cohen, E. (2018, June). Bootstrapped graph diffusions: Exposing the power of nonlinearity. In Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems (pp. 8-10).
Cai, C., & Wang, Y. (2020). A note on over-smoothing for graph neural networks. In ICML 2020.

Cai, C., Hy, T.S,, Yu, R., & Wang, Y. (2023, July). On the connection between mpnn and graph transformer. In International Conference on Machine Learning (pp. 3408-3430). PMLR.

Chamberlain, B., Rowbottom, J., Gorinova, M. |., Bronstein, M., Webb, S., & Rossi, E. (2021, July). Grand: Graph neural diffusion. In International conference on machine learning (pp. 1407-1418). PMLR.

Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni, F., Dong, X., & Bronstein, M. (2021b). Beltrami flow and neural diffusion on graphs. Advances in Neural Information Processing Systems, 34, 1594-1609.

Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020, November). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725-1735). PMLR.

Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu, X., & Wang, Z. (2022). Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study. IEEE TPAMI.

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc..

Devriendt, K., & Lambiotte, R. (2022). Discrete curvature on graphs from the effective resistance. Journal of Physics: Complexity, 3(2), 025008.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P., & Bronstein, M. M. (2023, July). On over-squashing in message passing neural networks: The impact of width, depth, and topology. ICML

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P., Markovich, T., & Bronstein, M. M. (2023). Understanding convolution on graphs via energies. In TLMR.

Di Giovanni, F., Rusch, T. K., Bronstein, M. M., Deac, A., Lackenby, M., Mishra, S., & Velickovi¢, P. (2024). How does over-squashing affect the power of GNNs?. TMLR.

Dwivedi, V. P., Rampasek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., & Beaini, D. (2022). Long range graph benchmark. Advances in Neural Information Processing Systems, 35, 22326-22340.

Eliasof, Moshe, Eldad Haber, and Eran Treister. "Pde-gcn: Novel architectures for graph neural networks motivated by partial differential equations." Advances in neural information processing systems 34 (2021): 3836-3849.
Errica, F., Christiansen, H., Zaverkin, V., Maruyama, T., Niepert, M., & Alesiani, F. (2024). Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching. In JMLR 2024

Fesser, L., & Weber, M. (2024, April). Mitigating over-smoothing and over-squashing using augmentations of Forman-Ricci curvature. In Learning on Graphs Conference (pp. 19-1). PMLR.

Gasteiger, J., Weilenberger, S., & Ginnemann, S. (2019). Diffusion improves graph learning. Advances in neural information processing systems, 32.

Giraldo, J. H., Skianis, K., Bouwmans, T., & Malliaros, F. D. (2023, October). On the trade-off between over-smoothing and over-squashing in deep graph neural networks. In ICKM. 227
Gutteridge, B., Dong, X., Bronstein, M. M., & Di Giovanni, F. (2023, July). Drew: Dynamically rewired message passing with delay. In International Conference on Machine Learning (pp. 12252-12267). PMLR.

References

Hamilton, W. L. (2020). Graph representation learning. Morgan & Claypool Publishers.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M., Duffield, N., Narayanan, K., & Qian, X. (2020, November). Bayesian graph neural networks with adaptive connection sampling. In ICML 2022.
Huang, K., Wang, Y. G., & Li, M. (2024). How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing. arXiv preprint arXiv:2405.12474.
Jamadandi, Adarsh, Celia Rubio-Madrigal, and Rebekka Burkholz. "Spectral Graph Pruning Against Over-Squashing and Over-Smoothing." arXiv preprint arXiv:2404.04612 (2024).

Karhadkar, K., Banerjee, P. K., & Montufar, G. (2022). FoSR: First-order spectral rewiring for addressing oversquashing in GNNs. In ICLR 2023

Jiang, W., Liu, H., & Xiong, H. (2023). Survey on Trustworthy Graph Neural Networks: From A Causal Perspective. arXiv preprint arXiv:2312.12477.

Keriven, N. Not too little, not too much: a theoretical analysis of graph (over) smoothing. NeurlPS 2022.

Kondor, R. I., & Lafferty, J. (2002, July). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th international conference on machine learning (Vol. 2002, pp. 315-322).

Li, Q., Han, Z., & Wu, X. M. (2018, April). Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1).
Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns?. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9267-9276).

Liu, M., Gao, H., & Ji, S. (2020, August). Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338-348).
Liu, Y., Zhou, C., Pan, S., Wu, J., Li, Z.,, Chen, H., & Zhang, P. (2023, April). Curvdrop: A ricci curvature based approach to prevent graph neural networks from over-smoothing and over-squashing. In WWW.
Liu, Y., Zheng, Y., Zhang, D., Lee, V. C., & Pan, S. (2023b, June). Beyond smoothing: Unsupervised graph representation learning with edge heterophily discriminating. AAAI.

Lim, D., et al. "New benchmarks for learning on non-homophilous graphs®. In WWW Workshop on GLB, 2021.

Lovdsz, L. (1993). Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46), 4.

Luan, S., Hua, C,, Lu, Q., Zhu, J., Zhao, M., Zhang, S., ... & Precup, D. (2022). Revisiting heterophily for graph neural networks. Advances in neural information processing systems, 35, 1362-1375.

Luan, S. et al (2024). The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges. Arxiv 2407.09618

Ma, Y., Liu, X., Shah, N., & Tang, J. (2022). Is homophily a necessity for graph neural networks?. ICLR 2022.

Maskey, S., Paolino, R., Bacho, A., & Kutyniok, G. (2024). A fractional graph laplacian approach to oversmoothing. Advances in Neural Information Processing Systems, 36.

Newman, M. “Assortative mixing in networks”. Phys. Rev. Lett., 89, 2002.

Nguyen, K., Hieu, N. M., Nguyen, V. D., Ho, N., Osher, S., & Nguyen, T. M. (2023, July). Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In ICML 2023.

Oono, K., & Suzuki, T. (2019). Graph neural networks exponentially lose expressive power for node classification. In ICLR 2020.

Pei, H. et al. “Geom-GCN: Geometric GCNs”. In ICLR, 2019.

Pham, T., Tran, T., Dam, H., & Venkatesh, S. (2017). Graph classification via deep learning with virtual nodes. arXiv preprint arXiv:1708.04357.

Qiu, H., & Hancock, E. R. (2006). Graph embedding using commute time. In Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, SSPR 2006 and SPR 2006,
Qian, Y., Expert, P., Rieu, T., Panzarasa, P., & Barahona, M. (2021). Quantifying the alignment of graph and features in deep learning. IEEE TNNLS

Rong, Y., Huang, W., Xu, T., & Huang, J. (2020). Dropedge: Towards deep graph convolutional networks on node classification. In ICLR 2020.

Rusch, T. K., Bronstein, M. M., & Mishra, S. (2023). A survey on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S., & Bronstein, M. (2022, June). Graph-coupled oscillator networks. In International Conference on Machine Learning (pp. 18888-18909). PMLR.
Southern, J., Di Giovanni, F., Bronstein, M., & Lutzeyer, J. F. (2024). Understanding Virtual Nodes: Oversmoothing, Oversquashing, and Node Heterogeneity. arXiv preprint arXiv:2405.13526.

Shao, Z., Shi, D., Han, A., Guo, Y., Zhao, Q., & Gao, J. (2023). Unifying over-smoothing and over-squashing in graph neural networks: A physics informed approach and beyond. arXiv preprint arXiv:2309.02769.

228

References

Spielman D. (2018). Spectral Graph Theory, Lecture 10: Random Walks on Graphs. Lecture at Yale https://www.cs.vale.edu/homes/spielman/561/lect10-18.pdf

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., & Bronstein, M. M. (2021). Understanding over-squashing and bottlenecks on graphs via curvature. ICLR 2022.

Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y. (2017). Graph attention networks.

Xhonneux, L. P., Qu, M., & Tang, J. (2020, November). Continuous graph neural networks. In International conference on machine learning (pp. 10432-10441). PMLR.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. (2018, July). Representation learning on graphs with jumping knowledge networks. In International conference on machine learning (pp. 5453-5462). PMLR.
Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W, ... & Wang, W. (2020, November). Robust graph representation learning via neural sparsification. In International Conference on Machine Learning (pp. 11458-11468). PMLR.
Zheng, Y., Luan, S., & Chen, L. (2024). What Is Missing In Homophily? Disentangling Graph Homophily For Graph Neural Networks. arXiv preprint arXiv:2406.18854.

Zhao, L., & Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In ICLR 2020.

Zhao, J., Dong, Y., Tang, J., Ding, M., & Wang, K. (2021). Generalizing graph convolutional networks via heat kernel.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., & Hu, X. (2020). Towards deeper graph neural networks with differentiable group normalization. Advances in neural information processing systems, 33, 4917-4928.

Zhou, K., Huang, X., Zha, D., Chen, R,, Li, L., Choi, S. H., & Hu, X. (2021). Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural Information Processing Systems, 34, 21834-21846.

F}}%l#fnlgtiggrgkﬁb\\/vvlggé’e é’ﬁgg\e/\r/ngritl-zom ;72§l—“b%7§‘ Feng, J. (2021b, October). Understanding and resolving performance degradation in deep graph convolutional networks. In Proceedings of the 30th ACM International Conference on

Zhu, J., et al. “Beyond homophily in graph neural networks: Current limitations and effective designs”. in NeurlPS, 2020
Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang, J., Liu, Q., ... & Wu, S. (2021). A survey on graph structure learning: Progress and opportunities. arXiv preprint arXiv:2103.03036.
Zhu, Y., Dy, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., & Wu, S. (2022, December). A survey on deep graph generation: Methods and applications. In Learning on Graphs Conference (pp. 47-1). PMLR.

229

https://www.cs.yale.edu/homes/spielman/561/lect10-18.pdf

Adrian Arnaiz-Rodriguez Ameya Velingker

adrian@ellisalicante.org ameyav@google.com
@arnaiztech @ameya_pa
2 Google Research

ALICANTE unit

Thanks to all collaborators, advisors and colleagues

Thanks for the discussions with Petar Velickovi¢, Chistopher Morris, Karel Devriendt,
Chaitanya Joshi, Soledad Villar, Nuria Oliver, Rishabh Anand, Christian Koke, Francesco Di
Giovanni, Federico Barbero, Lorenzo Giusti, Federico Errica and Josh Southern

https://icml.cc/virtual/2024/tutorial/35233
https://icml2024graphs.ameyavelingker.com/

% GENERALITAT

(@) Google Research s

m ntel @UH csbxe

nnnnnnnnnnnnnnnn

https://icml.cc/virtual/2024/tutorial/35233
https://icml2024graphs.ameyavelingker.com/

. . @ ® Graph Learning: Principles, Challenges, and Open Dlrectlons
' ICML 2024 - 22/07/2024

.........

0N =
.........
,,,,,,,

v \ 2
s o = E RS ST &

n
""""""
A e

Michael Bronstein Michael Galkin Christopher Morris Bryan Perozzi
DeepMind Professor of Al Research Scientist Assistant Professor Research Scientist at
Artificial Intelligence at Intel Labs at RWTH Aachen Google Research
University

Panel Discussion

Open questions and challenges on GNNs e ¢
Graphs + LLMs &R RS
Graph Foundation Models e R R Sl o SSNRE e

e
LY,

	Intro
	Slide 1
	Slide 2
	Slide 3: Panel Discussion Open questions and challenges on GNNs Graphs + LLMs Graph Foundation Models
	Slide 4: INTRODUCTION
	Slide 5: Graphs
	Slide 6: Graph Learning
	Slide 7: Types of Tasks
	Slide 8: Challenges of Machine Learning on Graphs
	Slide 9: Convolutional Networks
	Slide 10: Transformers

	Early methods
	Slide 11: EARLY METHODS
	Slide 12: Early Methods: Node Embeddings and Graph Kernels
	Slide 13: Node Embeddings for Downstream Tasks
	Slide 14: Similarity in Node Embeddings
	Slide 15: Random Walks for Node Embeddings
	Slide 16: Random Walks for Node Embeddings
	Slide 17: Random Walk Strategies 
	Slide 18: DeepWalk [Perozzi et al., 2014]
	Slide 19: Limitations of Node Embeddings
	Slide 21: Intuition: Convolutional Networks

	Intro GNNs
	Slide 22: GRAPH NEURAL NETWORKS (GNNs)
	Slide 23: GNNs - Message Passing Networks (MPNNs)
	Slide 24: MPNNs: Aggregate and Update
	Slide 25: Readout Layer
	Slide 26: GNN in Action: Node Classification
	Slide 27: GNN in Action: More Layers
	Slide 28: Graph Convolutional Networks (GCN) [Kipf and Welling, 2017]
	Slide 29: Graph Convolutional Networks (GCN) [Kipf and Welling, 2017]
	Slide 30: GraphSAGE [Hamilton et al., 2017]
	Slide 31: GraphSAGE [Hamilton et al., 2017]
	Slide 32: Graph Attention Networks (GAT) [Veličković et al., 2018]
	Slide 33: Graph Attention Networks (GAT) [Veličković et al., 2018]

	INTRO Spectral
	Slide 34: TOOLS FOR GRAPH LEARNING
	Slide 35: Spectral Graph Theory
	Slide 36: Laplacian Eigenvectors
	Slide 37: Laplacian Eigenvectors
	Slide 38: Laplacian Eigenvectors
	Slide 39: Cheeger constant
	Slide 40: Cheeger constant
	Slide 41: Laplacian Eigenvectors
	Slide 42: Effective Resistance and Commute Time
	Slide 43: Effective Resistance and Commute Time
	Slide 44: Effective Resistance
	Slide 45: Effective Resistance as Commute Times
	Slide 46: Effective Resistance as Commute Times
	Slide 47: Effective Resistance as Commute Times
	Slide 48: Effective Resistance as Commute Times
	Slide 49: Effective Resistance as Commute Times
	Slide 50: Effective Resistance as Commute Times

	Transformers
	Slide 51: GRAPH TRANSFORMERS
	Slide 52: Transformers
	Slide 53: Graph Transformers
	Slide 54: Graph Transformers
	Slide 55: Positional Encodings
	Slide 56: Positional Encodings
	Slide 57: Laplacian Eigenvalues/Eigenvectors
	Slide 58: Learned Positional Encodings (LPE) [Kreuzer et al., 2021]
	Slide 59: Combine LPEs with Attention
	Slide 60: Positional Encodings (with vs. without)
	Slide 61: Graphormer [Ying et al., 2021]
	Slide 62: Graphormer [Ying et al., 2021]
	Slide 63: Graphormer: Molecular Graphs [Ying et al., 2021]
	Slide 64: Graphormer: Molecular Graphs [Ying et al., 2021]
	Slide 65: Scaling
	Slide 66: Sparse Transformers for Graphs
	Slide 67: Exphormer [Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
	Slide 68: Exphormer: Experimental Results [Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
	Slide 69: Exphormer: Long-Range Benchmark [Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
	Slide 70: Message Passing vs. Graph Transformers
	Slide 71: GraphGPS [Rampášek et al., 2022]

	Expresiveness
	Slide 72: EXPRESSIVITY
	Slide 73: Expressivity of GNNs
	Slide 74: Expressivity: WL Isomorphism Test
	Slide 75: 1-WL Isomorphism Test in Action
	Slide 76: 1-WL Algorithm
	Slide 77: 1-WL Isomorphism Test
	Slide 78: 1-WL Limitations
	Slide 79: k-WL Algorithm
	Slide 80: Going Beyond WL Test?
	Slide 81: How to Enhance Expressivity?
	Slide 82: How to Enhance Expressivity?
	Slide 83: Adding Features
	Slide 84: Adding Features
	Slide 85: Graph Substructure Networks
	Slide 86: Graph Substructure Networks
	Slide 87: Adding Features
	Slide 88: Effective Resistance
	Slide 89: Effective Resistance: Going Beyond 1-WL
	Slide 90: Resistive Embeddings
	Slide 94: Incorportating Affinity Measures into GNNs
	Slide 95: Large-Scale Molecular Graphs: PCQM4M-LSCv1
	Slide 96: How to Enhance Expressivity?
	Slide 97: Modulate the Message Passing
	Slide 98: Identity-Aware Graph Networks [You et al., 2021]
	Slide 99: Directional Graph Networks (DGN) [Beaini et al., 2020]
	Slide 100: How to Enhance Expressivity?
	Slide 101: Modify Underlying Graph
	Slide 102: Higher Order GNNs
	Slide 103: Higher Order GNNs [Morris et al., 2019]
	Slide 104: Higher Order GNNs [Morris et al., 2019]
	Slide 105: High Order Hierarchy

	GENERALIZABILITY
	Slide 106: GENERALIZABILITY
	Slide 107: Generalizability of GNNs
	Slide 108: Graph Substructure Networks (GSN) [Bouritsas, Frasca, Zafeiriou, Bronstein '22]
	Slide 109: Vapnik-Chervonenkis (VC) Dimension
	Slide 110: VC Dimension
	Slide 111: WL Meets VC [Morris, Geerts, Tönshoff, Grohe - ICML '23]
	Slide 115: WL Meets VC [Morris, Geerts, Tönshoff, Grohe - ICML '23]
	Slide 116: Expressivity vs. Generalizability
	Slide 117: Expressivity vs. Generalizability [Franks, Morris, Velingker, Geerts – ICML '24]
	Slide 118: PREVIEW: Expressivity vs. Generalizability [Franks, Morris, Velingker, Geerts – ICML '24]
	Slide 119: PREVIEW: Gradient Flow Convergence to Max Margin [Franks, Morris, Velingker, Geerts – ICML '24]

	Over-Problems-Intro
	Slide 120: Challenges for GNNs Under-reaching, Over-smoothing and Over-squashing
	Slide 121: Common origin of the problems
	Slide 122: Common origin of the problems
	Slide 123: Long-Range and Heterophily
	Slide 124: Long-Range and Heterophily
	Slide 125: Problems briefly

	UR
	Slide 126: Under-reaching
	Slide 127: Under-reaching

	Ov-Smoothing
	Slide 128: Over-smoothing OSM
	Slide 129: Over-smoothing
	Slide 130: Over-smoothing
	Slide 131: Over-smoothing
	Slide 132: Over-smoothing
	Slide 133: How do we measure Over-smoothing?
	Slide 134: How do we measure Over-smoothing?
	Slide 136: How do we measure Over-smoothing?
	Slide 137: Reasons for Over-smoothing
	Slide 138: Reasons for Over-smoothing
	Slide 139: Reasons for Over-smoothing
	Slide 140: Reasons for Over-smoothing
	Slide 141: Does this analysis answer the question?
	Slide 142: Reasons for Over-smoothing
	Slide 143: Reasons for Over-smoothing
	Slide 144: OSM in GCN wrt aggregation function
	Slide 145: How is OSM manifested in practice?
	Slide 147: Solutions
	Slide 148: Solutions to Over-smoothing
	Slide 149: Solutions to Over-smoothing
	Slide 150: Solutions to Over-smoothing
	Slide 151: Solutions to Over-smoothing
	Slide 152: Solutions to Over-smoothing
	Slide 153: Solutions to Over-smoothing
	Slide 154: Advanced GNN Architectures
	Slide 155: Recap on Over-smoothing

	Ov-squashing
	Slide 156: Over-squashing OSQ
	Slide 157: Over-squashing
	Slide 158: Over-squashing
	Slide 159: Over-squashing
	Slide 160: How to Measure Over-squashing?
	Slide 161: Measures of OSQ
	Slide 162: Measures of OSQ
	Slide 163: Measures of OSQ
	Slide 164: Measures of OSQ
	Slide 165: Measure Over-squashing
	Slide 166: Measure Over-squashing
	Slide 167: Measure Over-squashing
	Slide 168: Measure Over-squashing
	Slide 169: Measure Over-squashing
	Slide 170: Measure Over-squashing
	Slide 171: Measure Over-squashing
	Slide 172: Measure Over-squashing
	Slide 174: Solutions

	Rewiring
	Slide 175: Graph Rewiring
	Slide 176: Graph Rewiring
	Slide 177: Graph Rewiring
	Slide 178: Graph Rewiring
	Slide 179: Graph Rewiring
	Slide 180: Graph Rewiring
	Slide 181: Graph Rewiring
	Slide 182: Spatial Rewiring - Curvature
	Slide 183: Spatial Rewiring - Curvature
	Slide 184: Spatial Rewiring - Curvature
	Slide 185: Spectral Rewiring – Differentiable
	Slide 186: Spectral Rewiring – Differentiable
	Slide 187: Spectral Rewiring – Differentiable
	Slide 188: Spectral Rewiring – Differentiable
	Slide 189: Spectral Rewiring – Differentiable
	Slide 190: Curvature and Effective Resistance
	Slide 191: Spectral Rewiring
	Slide 193: Spectral Rewiring
	Slide 194: GTR and FOSR
	Slide 196: Spatial Rewiring - Dynamic
	Slide 197: Spatial Rewiring - Dynamic
	Slide 198: Spatio-Spectral Rewiring
	Slide 199: Spatio-Spectral Rewiring
	Slide 202: Other Rewiring Flavors
	Slide 203: Open problems for Graph Rewiring

	Virtual nodes
	Slide 204: Virtual Nodes
	Slide 205: Virtual Nodes

	Advanced architectures
	Slide 206: Advanced Architectures
	Slide 207: Advanced Architectures
	Slide 208: OSQ Take-away

	Trade-off OSM-OSQ
	Slide 209: Trade-off between OSM and OSQ
	Slide 210: Trade-off between OSM and OSQ
	Slide 211: Trade-off between OSM and OSQ
	Slide 212: Trade-off between OSM and OSQ
	Slide 214: Trade-off between OSM and OSQ
	Slide 215: Trade-off between OSM and OSQ
	Slide 216: Trade-off between OSM and OSQ

	Critical with problems
	Slide 217: Open Questions
	Slide 218: Open Questions on OSM
	Slide 219: Open Questions on OSQ
	Slide 220: Open Questions on OSQ
	Slide 221: Open Questions on OSQ
	Slide 222: Open Questions on OSQ
	Slide 223: Underlying problem: Probability distribution of G

	Conclussions and Future
	Slide 224: Conclusions OSM and OSQ
	Slide 225: Recap on open questions
	Slide 226: More recent work

	References
	Slide 227: References
	Slide 228: References
	Slide 229: References
	Slide 230

	Panel
	Slide 231: Panel Discussion Open questions and challenges on GNNs Graphs + LLMs Graph Foundation Models

