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INTRODUCTION



Graphs

• Set of Nodes = 𝑉
• Optionally with features 𝑋

• Set of Edges = 𝐸

• Adjacency Matrix  = 𝐴
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Graph Learning

Molecular 
Graphs

Knowledge 
Graphs

Social 
Network 
Graphs

Road Network 
Graphs
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Types of Tasks

• Node-level tasks
o Node classification

o Node clustering

o Node regression

• Edge-level tasks
o Link prediction

o Edge classification

o Knowledge graph completion

• Graph-level tasks
o Graph classification

o Graph regression
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Challenges of Machine Learning on Graphs

• Much of deep learning is on sequence or grid data
o Transformers on sequences of tokens

oConvolutional neural networks (CNNs) on pixel grids

• Graphs have more general topological structures

• Local neighborhoods vary in structure

• How to identify or order nodes within the graph?
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Convolutional Networks

• Weight sharing

• Filters capture neighborhood
on a grid graph

• ResNet, VGGNet, etc.
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Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b



Transformers

• Sequences of tokens

• Next token prediction based 
on a past context window

• Line graph
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Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b



EARLY METHODS



Early Methods: Node Embeddings and Graph 
Kernels

• Map nodes into a (low-dimensional) 
embedding space
o Similar nodes should have similar 

embeddings

• Methods
o DeepWalk ([Perozzi et al., 2014])

o Node2vec ([Grover and Leskovec, 2016])

• Techniques based on random walks, 
matrix factorization

• Graph kernels: map graphs to 
embeddings
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Node Embeddings for Downstream Tasks

13

v1

v3

v2

vn

⋮

• Graph clustering
• Link prediction
• Graph classification
• Node classification
• Node regression
• Anomaly detection



Similarity in Node Embeddings

• Similarity of two nodes given by embeddings: 〈zu, zv〉

• Embeddings should maximize 〈zu, zv〉 for those pairs (u, v) that are 
similar

• How to decide whether u, v are similar?
o Supervised approach: learn node embeddings based on tasks, labels

oUnsupervised approach: learn node embeddings according to some structural 
aspects of the network
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Random Walks for Node Embeddings

• Idea: Similarity of two nodes determined by whether they occur 
together in a random walk

• Random walks capture local information as well as some multi-hop 
information

• Filters out pairs of nodes that don't occur together on random walks 
(efficiency)
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Random Walks for Node Embeddings

• Collect random walk statistics according to some random walk 
strategy
oRun short fixed-length random walks starting from different nodes

oCollect statistics on which nodes appear on random walks starting from 
each node

• Optimize the embeddings according to random walk stats
oDefine loss (e.g., based on maximum likelihood)

o Stochastic gradient descent (SGD)
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Random Walk Strategies

• DeepWalk ([Perozzi et al., 2013]): Use fixed-length, unbiased random 
walks starting from every node

• node2vec ([Grover and Leskovec, 2016]): Use biased random walks 
that can trade off between local and global views of the graph
o Interpolate between BFS and DFS

o In-out parameter and return parameter
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DeepWalk
[Perozzi et al., 2014]

• Fixed length, unbiased random walks from every node
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Limitations of Node Embeddings

• Transductive: Cannot get embeddings for nodes not seen during 
training, e.g., in new or dynamic graphs

• Unable to capture common structural properties across long 
distances

• Unclear how to incorporate rich node-, edge-, and graph-level 
features

SOLUTION: Graph neural networks (GNNs) for deep representation 
learning!
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Intuition: Convolutional Networks

• Weight sharing

• Filters capture neighborhood
on a grid graph

• GNNs generalize this intuition to general graphs

• Challenge: neighborhoods look different!

21
Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b



GRAPH NEURAL NETWORKS 
(GNNs)



GNNs - Message Passing Networks (MPNNs)

• Combine node-, edge-, and graph-
level features

• Perform iterative message passing 
step

• Deal with varying local 
neighborhoods

• Parameter sharing (#params not 
depending on graph size)
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Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. 

Neural message passing for quantum chemistry. ICLM 2017.



MPNNs: Aggregate and Update

• Initial node features hu
(0)

• Edge features eu,v

• Iteratively perform L message passing steps to produce node embeddings hu
(1), hu

(2), … hu
(L):
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Permutation invariant function 
(e.g., SUM, MAX, AVG)

Message from neighbor v to u

Final update combining 
aggregation with self features



Readout Layer

• After L message-passing 
layers, we get embeddings 
hu

(L) at each u

• How to convert to a final 
prediction?

• Use a readout layer
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Graph-level task:

Node-level task:

Edge-level task:



GNN in Action: Node Classification

26Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv:2003.04078.



GNN in Action:
More Layers

27
Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv:2003.04078.



Graph Convolutional Networks (GCN)
[Kipf and Welling, 2017]
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• A = n x n adjacency matrix

• D = n x n diagonal (degree) 
matrix

• Update Rule:

Nonlinear activation 
(e.g., ReLU)

dt+1 x dt weight matrix (learnable)

Column-stacked node representations



Graph Convolutional Networks (GCN)
[Kipf and Welling, 2017]

• Update Rule:
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Nonlinear activation 
(e.g., ReLU)

dt+1 x dt weight matrix (learnable)

Column-stacked node representations



GraphSAGE
[Hamilton et al., 2017]

• Idea: Sample and aggregate

• Use random samples of neighbors from multiple hops
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GraphSAGE
[Hamilton et al., 2017]
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Neighborhood = fixed-size sample 
from 1-hop, 2-hop neighbors

Nonlinear activation (e.g., ReLU)



Graph Attention Networks (GAT)
[Veličković et al., 2018]

• Assign importances to neighbors in the aggregation step

• Use an attention mechanism to compute scores

32

LeakyReLU
activation function



Graph Attention Networks (GAT)
[Veličković et al., 2018]
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Attention Scores:



TOOLS FOR GRAPH 
LEARNING



Spectral Graph Theory
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Laplacian Eigenvectors

[Chung, 1997]

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient on the graph



Laplacian Eigenvectors

[Chung, 1997]

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient on the graph

37

Variability of node signal wrt graph structure

Eigenvalues are the Rayleigh Quotient 
of the eigenvectors of the graph 

(orthonormal functions that minimizes variability 
wrt the structure of the graph)



Laplacian Eigenvectors

Spectral gap
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Cheeger constant
Min Cut

Cut

# of inter-edges

Normalized by minimum 
volume of node subset

Cheeger Constant

Size of the minimum cut to disconnect the graph

[Cheeger 1970; Chung 1997]
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Cheeger constant
Min Cut

Cut

# of inter-edges

Normalized by minimum 
volume of node subset

Cheeger Constant

Size of the minimum cut to disconnect the graph

Size of Cut as Laplacian Quadratic form

Cheeger Inequality

[Cheeger 1970; Chung 1997]
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Laplacian Eigenvectors

𝝀𝟐

Minimum amount of energy needed to disconnect the graph
Bottleneck
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• Commute time: Expected number of steps for a Random-Walker go from u to v and come back
Captures global behavior and long-range dependencies

Effective Resistance and Commute Time

The more and shorter 
paths between a pair of 
nodes 
The smaller Ruv is

Even if SP does not change 

42



• Commute time: Expected number of steps for a Random-Walker go from u to v and come back
Captures global behavior and long-range dependencies

Effective Resistance and Commute Time

The more and shorter 
paths between a pair of 
nodes 
The smaller Ruv is

Even if SP does not change 

Pseudo-Inverse
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Effective Resistance

• View graph as electrical circuit
• Edges are resistors

• Send current between two points and 
measure effective resistance

• ERs capture topological structure in 
graph

• Widely used in theoretical 
computer science
• Graph sparsification

• Linear system solvers

• Graph clustering
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Effective Resistance as Commute Times

45

• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v



Effective Resistance as Commute Times
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• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v



Effective Resistance as Commute Times
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• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v

u ⇝ v ⇝ u in 6 steps



Effective Resistance as Commute Times
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• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v



Effective Resistance as Commute Times
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• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v



Effective Resistance as Commute Times
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• Start random walk from u

• Cu,v is expected time to reach v 

and come back to u

u

v

u ⇝ v ⇝ u in 5 steps



GRAPH TRANSFORMERS



Transformers

• Sequences of tokens

• Next token prediction based 
on a past context window

• Line graph

• Typically dense

52
Image from https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b



Graph Transformers

• Extension of transformers to graph-structured data

• Instead of next-token prediction in sequences, learn node 
representations

• Often dense (full connections) - computational graph different from 
input graph

• Challenges
oHow to account for loss of inductive bias from input graph structure?

oHow to identify nodes (position, structure) within the graph?

o Scaling?
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Graph Transformers

• Sample architecture 
([Dwivedi and Bresson, 
2021])

• Number of newer 
architectures

• SAN

• Graphormer

• GraphGPS
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Positional Encodings

• Sequence transformers use 
sinusoids (sin, cos functions)
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Positional Encodings

• Sin, cos functions arise as eigenfunctions of Laplacians in Euclidean 
space

• On graphs: eigenvectors of graph Laplacian L = D - A

56



Laplacian Eigenvalues/Eigenvectors
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Learned Positional Encodings (LPE)
[Kreuzer et al., 2021]
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• Learned positional encodings (LPE) on top of Laplacian-based features



Combine LPEs with Attention

• Spectral Attention 
Networks (SAN) -
[Kreuzer et al., 2021]
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Positional Encodings (with vs. without)
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Graphormer
[Ying et al., 2021]

• Two key new ideas

• Centrality encoding
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• Spatial encoding (distance-based attention bias)

Standard attention 
computation

Attention bias

Shortest path distance



Graphormer
[Ying et al., 2021]
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Graphormer: Molecular Graphs
[Ying et al., 2021]
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Graphormer: Molecular Graphs
[Ying et al., 2021]
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Scaling

• Typical transformer has O(N2) 
dependence – prohibitive for long 
sequences or large graphs

• Dense attention ⟶ sparse 
attention
• Still maintain good global 

connectivity

• Efficient computation: O(N+M) 
interaction pairs

• Many sparse attention 
mechanisms proposed for 
sequence transformers

65
Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient Transformers: A Survey. ACM Computing Survey, volume 55. 2022



Sparse Transformers for Graphs

• Exphormer ([Shirzad et al., 2023]) – similar to Big Bird ([Zaheer et al., 
2020])

• Nodeformer ([Wu et al., 2023)) – inspired by Performer 
([Choromanski et al., 2021]), uses kernelized Gumbel-Softmax
operator

• Sampling-based: Gophormer ([Zhao et al., 2021]), NAGphormer
([Chen et al., 2022])

• Diffusion-based: Difformer ([Wu et al., 2023])

• Spectral filtering: Specformer ([Bo et al., 2023])

• And many more…
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Exphormer
[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
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Original Graph
• Preserve locality from 

the original graph

Expander Graph
• Random walk mixing

• Constant degree, O(N) 
edges

Global Sink
• "Storage sink"

• Short connections 
between all node pairs

Exphormer: Combine all three 
to form the interaction graph!



Exphormer: Experimental Results
[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
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Exphormer: Long-Range Benchmark
[Shirzad, Velingker, Venkatachalam, Sutherland, Sinop – ICML 2023]
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Message Passing vs. Graph Transformers

70

Message Passing

Updates across edges of input graph

Captures inductive bias from input 

graph topology

Efficient computation: O(N + M)

Difficulty with long-range 

dependencies

Oversmoothing, oversquashing

Expressivity limitations

Graph Transformers

70

Positional and 
structural encodings

Graph-oriented 
sparse attention 
schemes

Use global attention

Computation graph can be different 

from input graph

Long-range modeling

Identifying nodes within graph

Loss of inductive bias from graph

Inefficient computation: O(N2)



GraphGPS
[Rampášek et al., 2022]

• Combine transformers 
with message-passing

• Transformers give 
added expressivity 
while message-
passing retains input 
graph structure

• Framework – mix and 
match MPNN layers, 
attention layers, and 
positional/structural 
encodings
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EXPRESSIVITY



Expressivity of GNNs

• GNN architectures can represent some functions but not others

• What functions can a message-passing GNN represent?
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Expressivity: WL Isomorphism Test

• WL test was proposed in 1968 as a heuristic 
for the existence of an isomorphism 
between two graphs

• Relation to result of [Babai, 2015]

• GNNs known to be bounded in expressivity 
by the Weisfeiler-Leman (WL) test ([Morris 
et al., 2019], [Xu et al., 2019])

• 1-WL test: Hash aggregated color multisets 
of neighbors at each step
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1-WL Isomorphism Test in Action

• 1-WL test: Hash aggregated color multisets of neighbors at each step

• Check if node color multisets of two given graphs match
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1-WL Algorithm
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1-WL Isomorphism Test

• Graph isomorphism is hard!

• 1-WL test fails to distinguish some 
pairs of non-isomorphic graphs

• A vanilla message-passing GNN also 
cannot distinguish such graphs
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1-WL Limitations

78



k-WL Algorithm

• Assign colors to k-tuples of nodes
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Going Beyond WL Test?

• Going beyond WL by 
proposing expressivity metrics 
via graph biconnectivity
([Zhang et al., 2023])

• Generalized Distance WL (GD-
WL)

• Uncovers limitations of many 
current GNN approaches

80



How to Enhance Expressivity?

• Standard GNNs limited by 1-WL graph isomorphism test

• Ways to improve GNN expressivity
• Add features

• Modulate message-passing

• Modify underlying graph

81



How to Enhance Expressivity?

• Standard GNNs limited by 1-WL graph isomorphism test

• Ways to improve GNN expressivity
• Add features

• Modulate message-passing

• Modify underlying graph
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Adding Features

• Add node, edge, or graph features that incorporate structural, 
positional, etc. information

• Often computed offline as a preprocessing step

83

Incorporate edge features

• New node features can 
be added to hu

(0)

• Graph-level features can 
be incorporated in Mt

and aggregation, update 
functions



Adding Features

• 1-WL limitation applies to very limited setting

• Inability to distinguish node identities

• Simple tweak: initializing nodes with random features goes beyond 1-WL ([Sato et 
al., 2021], [Abboud et al., 2021])
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Graph Substructure Networks

• Features that encode topological structures/substructures

• Graph Substructure Networks (GSN) [Bouritsas et al., 2022]: Encode subgraph 
counts
• Pick a set of graphs: {H1, H2, …, HK}

• Node features: Count appearance of v in different orbits for each Hi

• Edge features: Count appearance of e in different edge automorphism orbits

85



Graph Substructure Networks

• Graph Substructure Networks (GSN): Encode subgraph counts
• Pick a set of graphs: {H1, H2, …, HK} and encode node, edge orbits as features

86

• Choice of substructures is domain-specific

• Chains and cycles in molecules



Adding Features

• GSN requires domain specific knowledge to know which substructures to use

• General-purpose (not domain-specific) ways of adding features

• Affinity Measures: capture structural information about graph ([Velingker et al., 
2023])
• Effective resistances (or commute time)

• Hitting times

• Resistive embeddings
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Effective Resistance

• ERs capture topological structure in 
graph

• Widely used in theoretical 
computer science
• Graph sparsification

• Linear system solvers

• Graph clustering

• View graph as electrical circuit
• Edges are resistors

• Send current between two points and 
measure effective resistance

88
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Res(u, v)



Effective Resistance: Going Beyond 1-WL

• ERs capture topological structure in 
graph

• Widely used in theoretical 
computer science
• Graph sparsification

• Linear system solvers

• Graph clustering

• View graph as electrical circuit
• Edges are resistors

• Send current between two points and 
measure effective resistance

89



Resistive Embeddings
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• ERs are scalar features along each edge

• Define richer vector embeddings that capture more structure

• Resistive embedding for each node satisfying:

• Efficient computation using dimensionality reduction techniques 
(JL Lemma)



Incorportating Affinity Measures into GNNs

• Use affinity measures as edge 
features in aggregation step!

• ER, hitting time affinity 
measures are scalar features

• Use Resistive Embeddings as 
node features

94



Large-Scale Molecular Graphs:
PCQM4M-LSCv1
• PCQM4M-LSCv1 in KDD Cup 2021 Contest

• Best published single model result (validation MAE < 0.12)

• Outperforms without molecular geometric features or use of dense attention 
networks!!!

95



How to Enhance Expressivity?

• Standard GNNs limited by 1-WL graph isomorphism test

• Ways to improve GNN expressivity
• Add features

• Modulate message-passing

• Modify underlying graph

96



Modulate the Message Passing

• Instead of adding features, modify the message passing mechanism itself

• Allow anisotropic aggregation of messages from neighbors

• We already saw one example: GAT
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Identity-Aware Graph Networks
[You et al., 2021]

• Use heterogeneous message-
passing to distinguish "root" node 
from other nodes
o First compute ego network centered at 

a node of interest

o Isolate instances of the center node in 
the computational graph

o Apply message passing with different 
sets of parameters for center node vs. 
others

• Allows cycle detection
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Directional Graph Networks (DGN)
[Beaini et al., 2020]

• Anisotropic message passing using Laplacian flows
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How to Enhance Expressivity?

• Standard GNNs limited by 1-WL graph isomorphism test

• Ways to improve GNN expressivity
• Add features

• Modulate message-passing

• Modify underlying graph
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Modify Underlying Graph

• Use a computation graph that is different from the input graph
oCan add/remove edges or nodes to the input graph

oCan be an altogether different graph

• Can be useful for datasets/tasks where the given input graph is noisy

• Challenge: Allow less restrictive computation while still maintaining 
the inductive bias of the input graph structure

101



Higher Order GNNs

• Recall the WL test of order k, i.e., k-WL

• Hierarchy in expressivity/distinguishing power

102

1-WL = 2-WL < 3-WL < 4-WL < ...

• Build GNN architectures that mimic k-WL

• Hierarchy in expressivity/distinguishing power



Higher Order GNNs
[Morris et al., 2019]

• Input graph G = (V, E)

• [V(G)]k = set of k-element subsets of V

• Neighborhoods on [V(G)]k:

103

• Local neighborhoods:



Higher Order GNNs
[Morris et al., 2019]

• Input graph G = (V, E)

• [V(G)]k = set of k-element subsets of V

104

• Aggregation and update rule:



High Order Hierarchy

• Variety of high-order WL variants

• Various new GNN architectures that are as expressive as k-WL ([Azizian and Lelarge, 2020], 
[Geerts, 2020], [Maron et al., 2019])

• Sparse variants (e.g., SpeqNets [Morris et al., 2022])

• High-order GNNs still suffer from a O(nk) dependence – k > 3 impractical for larger graphs
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GENERALIZABILITY



Generalizability of GNNs

• Expressivity vs. generalizability

• More expressive networks lead to 
overfitting?

• In practice, no! Expressivity and 
generalizability often go hand in 
hand

• Subgraph-based enhancements: 
Graph Substructure Networks (GSN)

107



Graph Substructure Networks (GSN)
[Bouritsas, Frasca, Zafeiriou, Bronstein '22]

• Experimental results show improvements

108



Vapnik-Chervonenkis (VC) Dimension

• Binary classification model f

• Model f (with params θ) shatters data points x1, x2, …, xn if for every 
assignment of labels, there exists θ for which f correctly classifies all xi

• VC dim = max number of points that are shattered by f

109



VC Dimension

• Statistical learning theory: VC dimension gives a bound on test error in terms of 
training error

• Hypothesis class H (output {-1, 1}), with h in H. VC dim = d. Training set size = m. 
Then, with probability ≥ 1 - δ, test error is not too big compared to training error:
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WL Meets VC
[Morris, Geerts, Tönshoff, Grohe - ICML '23]

• Consider binary graph classification

• Class C of GNNs

• G1, G2, …, Gm are shattered by C if for any τ in {0, 1}m, there exists a 
gnn in C such that:
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WL Meets VC
[Morris, Geerts, Tönshoff, Grohe - ICML '23]

• VC dimension bounds for a variety of settings:
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Expressivity vs. Generalizability

• Empirical results (e.g., Graph Substructure Networks (GSN)) show added 
expressivity results in improved predictive performance

• Upper and lower bounds on VC dimensions of message-passing GNNs ([Morris, 
Geerts, Tönshoff, Grohe - ICML '23])

• Question: Why does increased expressivity correspond to better generalization 
while keeping the training set equal?
o [Morris et al. '23] demonstrated correlation between VC dimension and the number of non-

isomorphic graphs that 1-WL can differentiate

o Increased expressivity ==> higher VC dimension
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Expressivity vs. Generalizability
[Franks, Morris, Velingker, Geerts – ICML '24]

• Initial work in ICLR 2024 in Vienna: Bridging the 
Gap Between Practice and Theory in Deep 
Learning (BGPT) workshop

• Poster on Thursday!
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PREVIEW: Expressivity vs. Generalizability
[Franks, Morris, Velingker, Geerts – ICML '24]
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• Consider linear classifiers

• Generalization error is characterized by the margin

• Address the question: When does expressivity lead to a larger vs 
smaller margin?

• Extend theory of partial concepts ([Alon et al., FOCS’21]) to MPNNs to 
get margin-based VC bounds



PREVIEW: Gradient Flow Convergence to Max Margin 
[Franks, Morris, Velingker, Geerts – ICML '24]

• MPNNs exhibit an "alignment" property

• Gradient flow pushes network weights toward the maximum margin solution

• Builds on results of [Ji and Telgarsky '19]
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Challenges for GNNs
Under-reaching, Over-smoothing and Over-squashing



Common origin of the problems
GNNs arise to leverage information on the graph topology to improve inference

HOW? 

• Diffusion of information over the structure A

→ Locality nature or Smoothness principle

• Repeated computation over X to reach information over the k-hop neighborhood Source: D. Zelle et al. GNNs in TensorFlow.
Google Research Blog. 2024

Random 
Walks

Lovasz 1993; Chung 1997; Kondor 2002

Graph Diffusion

121

https://research.google/blog/graph-neural-networks-in-tensorflow/


Common origin of the problems
GNNs arise to leverage information on the graph topology to improve inference

HOW? 

• Diffusion of information over the structure A

→ Locality nature or smoothness principle

• Repeated computation over X to reach information over the k-hop neighborhood

Difficulties
 Long range dependencies

 Heterophily

 Uneven location distribution of labeled nodes

Source: D. Zelle et al. GNNs in TensorFlow.
Google Research Blog. 2024

Random 
Walks

Lovasz 1993; Chung 1997; Kondor 2002

Graph Diffusion
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https://research.google/blog/graph-neural-networks-in-tensorflow/


Long-Range and Heterophily

Long Range tasks depend on interactions between distant nodes
[Alon. et al., 2020]

Long-range 3D atomic 
contact not captured by 
the structure 
[Dwivedi et al., 2022] 
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Long-Range and Heterophily

Homophily metrics measure how the graph structure aligns with the nodes’ signals

Most widely used in the literature: based on 1-hop neighbors.

ℎ𝒆𝒅𝒈𝒆𝒔 =
|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢 = 𝑦𝑣}|

|𝐸|

H𝑖𝑗(𝐸) =
|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢𝑖 ∧ 𝑦𝑣 = 𝑗}|

|{ 𝑢, 𝑣 ∈ 𝐸: 𝑦𝑢 = 𝑖}|

ℎ𝒏𝒐𝒅𝒆𝒔 =
1

𝑉


𝑣∈𝑉

|{𝑢 ∈ 𝑁 𝑣 : 𝑦𝑢 = 𝑦𝑣}|

|𝑁 𝑣 |

[Zhu, J., et al., 2020] [Pei, H. et al., 2019] 

[Lim, D. et al., 2021] 

ℎ𝒄𝒍𝒂𝒔𝒔 =
1

|𝐶| − 1


𝑐∈C

ℎ𝑐 −
𝐶𝑐

𝑛
+

, ℎ𝑐 =
σ𝑣∈𝑐 |{𝑢 ∈ 𝑁 𝑣 : 𝑦𝑢 = 𝑦𝑣}|

σ𝑣∈𝑐 |𝑁 𝑣 |

Long Range tasks depend on interactions between distant nodes
[Alon. et al., 2020]

Long-range 3D atomic 
contact not captured by 
the structure 
[Dwivedi et al., 2022] 
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Problems briefly

Under-reaching Over-smoothing Over-squashing↑ 𝑘

𝑘 > 𝑟 ≈ 𝑑𝑘 < 𝑟 Node’s receptive field increases 

exponentially with 𝑘

r = problem radius
k = n layers
d = graph diameter 
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Under-reaching

• Inability of nodes to be aware of nodes that are farther 
away than the number of layers 𝑘 [Barceló 2022]

• Inability of information to propagate 
further than 𝒌 layers of the GNN [Alon 2022]

• Number of layers smaller than problem radius

• 𝒌 < 𝒓

• r typically grows with n → k dependent on the graph size

Solution
Stack 𝑘 > 𝑟 layers so information is exchanged among distant nodes
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Over-smoothing
OSM



Over-smoothing

• When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

WHAT
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Convergence of the node embeddings as the number (k) of message passing layers increases



• Conceptual origin of the problems: too much mixing

Over-smoothing

• When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

How many times do we mix
(k layers)

How information is mixed 
A) Connectivity of 𝐺
B) GNN architecture

WHAT

Convergence of the node embeddings as the number (k) of message passing layers increases
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• Conceptual origin of the problems: too much mixing

• “Independent” of the problem radius

Over-smoothing

• When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

How many times do we mix
(k layers)

How information is mixed 
A) Connectivity of 𝐺
B) GNN architecture

WHAT
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Over-smoothing

• When stacking many layers in a GNN, node representations can become indistinguishable
[Li et al 2018; Oono and Suzuki 2020; Cai et al 2020; Chen et al 2020; Zhou et al 2020; Zhou et al 2020 ; Rusch et al 2023]

WHAT

132

[Chen et al 2020]
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How do we measure Over-smoothing?
• Other metrics such as 

• Consensus in using Dirichlet Energy of a signal on the Graph
[Chung, 1997; Cai et al 2020; Rusch et al 2023]

Principled

.5
.5

1
0

.7

.2

Constrained 
variability of signal 
H wrt G

Measure
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How do we measure Over-smoothing?
Recap on Eigenvectors

Eigenvectors are a set orthonormal functions that minimize the Rayliegh Quotient (normalized DE) on G

[Chung, 1997]

Eigenvalues are the Rayliegh Quotient (normalized DE) 
of the eigenvectors of the graph (orthonormal functions that minimizes DE)
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How do we measure Over-smoothing?
• Dirichlet Energy of a signal on the Graph

[Chung, 1997; Cai et al 2020; Rusch et al 2023]

Constrained 
variability of signal 
H wrt G

[Rusch et al 2023] Ongoing work with Rishabh Anand
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Reasons for Over-smoothing

• Over-smoothing as the stationary distribution 𝝅 of a random walk in a Graph
[Chung, 1997; Spielman; 2018; Giraldo et al 2023]

Random Walk perspective: stationary (stable) distribution

Why - connectivity

Distribution over nodes 
in G after k steps

Distribution over nodes in G

Converges to stationary distribution
(no feature information)

Connection with
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Reasons for Over-smoothing

• Over-smoothing as the stationary distribution 𝝅 of a random walk in a Graph
[Chung, 1997; Spielman; 2018; Giraldo et al 2023]

Random Walk perspective: stationary (stable) distribution

Why - connectivity

Distribution over nodes 
in G after k steps

Distribution over nodes in G

Converges to stationary distribution
(no feature information)

•     denotes the rate of convergence → The higher the spectral gap, the faster the convergence to 𝝅

Connection with

Apply RW smoothing
too many times → stationary point

The more connectivity, the higher 
the rate of convergence
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• Over-smoothing as averaging network [Ghosh et al 2008] 

• Discrete diffusion (heat) equation converges to the averaging network at infinite steps

Reasons for Over-smoothing
Random Walk perspective: averaging network

Connection with

Why - connectivity
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• Over-smoothing as averaging network [Ghosh et al 2008] 

• Discrete diffusion (heat) equation converges to the averaging network at infinite steps

• Rate of convergence

• determine the rate at which averaging takes place 

• are the mode of the system

• Time constant for 𝜙𝑘 to decay by a factor 𝑒

• Total effective resistance is proportional to the sum of time constants → the lower, the faster convergence

Reasons for Over-smoothing
Random Walk perspective: averaging network

Connection with

Why - connectivity
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Does this analysis answer the question?
GCN is augmented 
heat diffusion process
→W
→𝝈

141

Feature Transformation

Non-linear feature transformation

Non-linear aggregation



Reasons for Over-smoothing
GNN architecture perspective

Why - GNN

[Cai et al 2020]

ReLu
LeakyReLu

• How does each component affect the DE between one layer and the next one?

• Over-smoothing in a GCN with feature transformation and non-linear activation functions (GCN)

142

Structure Weight 
matrix

Activation

[Oono et al 2019; Cai et al 2020]



• DE of one layer is upper-bounded by the previous layer DE 

• The upper bound depends on the graph connectivity and the structure of the weights

Reasons for Over-smoothing
GNN architecture perspective

Why - GNN

[Cai et al 2020]

ReLu
LeakyReLu

[Oono et al 2019; Cai et al 2020]• How does each component affect the DE between one layer and the next one?

• Over-smoothing in a GCN with feature transformation and non-linear activation functions (GCN)

[Zhou et al 2021]

Square of maximum singular value of 𝑊𝑘
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OSM in GCN wrt aggregation function
DE converges per epoch and layer

DE slightly converges per epoch 
but explodes per layer

M
EA

N
 a

gg
re

ga
ti

o
n

 f
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n
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io
n A

D
D

 aggregatio
n

 fu
n

ctio
n

Ongoing work with R. Anand

GCN Depth VS
Last-layer DE VS 

Accuracy

LA
YE

R

16

Epoch VS 
Layer DE

DE does not always 
correlate with accuracy

OSM in Practice
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How is OSM manifested in practice?

• But… Main intuition of Laplacian smoothing (low-pass filters) only proven for
• non-linear ReLU or LReLU

• Small weight matrices (measured by their singular values)

• No residual connections, no normalization, no for all aggregation functions…

• Dominant frequency explanation [Di Giovanni 2023, TMLR]

• Low-Frequency-Dominant (LFD) MPNNs 

• High-Frequency-Dominant (HFD) MPNNs

Small eigenvectors are 
related to smoothing
Homophily

High  eigenvectors are 
related to sharpness
Heterophily

For some X

When?

GNN architecture perspective

In principle, OSM is mitigated by choosing message passing functions that do not act as low-pass filters

Why - GNN
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Solutions
• Normalization of node-embeddings

• Graph Sparsification

• Regularization of weight matrix

• Skip-connections

• Change GNN Dynamics 
• GAT, GraphSage

• Physics inspired GNN

• Adaptative GNNs

Empirical review of some of the methods and tricks in Chen, et al 2022. “Bag of tricks” 147



Solutions to Over-smoothing

• Node embedding normalization techniques.

• Set distances to be constant throughout every layer in the GNN: PairNorm [Zhao et al 2020] or NodeNorm [Zhou et al 2021b]

• Also extensible to group-normalization: DGN

• Learn to maintain the node pair distance in the node batch or group

Normalization of embeddings

[Zhao et al 2020]

[Zhou et al 2020]
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Solutions to Over-smoothing

• To sparsify a graph reduces the spectral gap, therefore the rate of convergence of node features

Graph Sparsification

[Lovász 1993]

149

Rayleigh Monotonicity principle 
When removing edges of the graph, all 𝑅𝑢𝑣’s are equal or higher 
Sparser graphs → Higher 𝑅𝑢𝑣’s → decreased lower bound

Max degree lower bound of spectral gap
Sparser graphs → decreased upper bound



Solutions to Over-smoothing

• To sparsify a graph reduces the spectral gap, therefore the rate of convergence of node features

Strategies

• Random sparsification [Rong et al 2020]

• Drop different edges per feature
and learn it via posterior inference [Hasanzadeh et al 2020]

• Neural sparsification [Zheng et al 2020]

Graph Sparsification

[Lovász 1993]
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Rayleigh Monotonicity principle 
When removing edges of the graph, all 𝑅𝑢𝑣’s are equal or higher 
Sparser graphs → Higher 𝑅𝑢𝑣’s → decreased lower bound

Max degree lower bound of spectral gap
Sparser graphs → decreased upper bound



• Skip connections to alleviate information loss [Li et al 2019]

Solutions to Over-smoothing
Skip connections
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• Skip connections to alleviate information loss [Li et al 2019]

• Parametrized skip connection and identity mapping to reduce the singular values of W. 
GCNII [Chen et al 2020] and EGNN [Zhou et al 2021]. Initial Residual connections also present in APPNP [Gasteiger et al 2018]

GCNII →

Solutions to Over-smoothing
Skip connections and trainable weights regularization

Initial residual Identity mapping

Reduce the norm and eigenvalues of W
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• Skip connections to alleviate information loss [Li et al 2019]

• Parametrized skip connection and identity mapping to reduce the singular values of W. 
GCNII [Chen et al 2020] and EGNN [Zhou et al 2021]. Initial Residual connections also present in APPNP [Gasteiger et al 2018]

GCNII →

• Combine all hidden node embeddings at the last layer JKNet [Xu et al 2018] and DAGNNs [Liu et al 2020]

Solutions to Over-smoothing
Skip connections and trainable weights regularization

Initial residual Identity mapping

Skip connections can enhance the High-Frequency-Dominant (HFD) MPNNs [Di Giovanni 2023, TMLR]

Reduce the norm and eigenvalues of W
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Advanced GNN Architectures

▪ GraphSAGE [Hamilton et al., '17], GAT [Veličković et al '17]

▪ Modify the dynamic of the GNN message passing sampling or 
learning the messages to aggregate

▪ Physics informed GNNs (PDEs and ODEs) – Time-continuous dynamical GNNs

▪ CGNN [Xhonneux et al 2020], PDE-GCN [Eliasof et al 2021], GRAND [Chamberlain 
et al 2021b], Neural Sheaf [Bodnar et al 2022], HKGCN [Zhao et al 21], 
GraphCON [Rusch et al 22], GRAFF [Di Giovanni et al 22], BLEND [Chamberlain et 
al 22], G-MHKG [Shao et al 23], FLODE [Maskey et al 2024]

▪ Adaptative GNNs [Errica et al 2023]

▪ Learn the depth of the network during training

▪ Differentiable message filtering

Change GNN Dynamics
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Recap on Over-smoothing

• Theoretically proved to be caused by
• Stacking many layers

• High Graph conductance

• Structure of the trainable weight matrix

• If the architecture acts as a low-pass filter (LFD MPNNs) then there will be OSM
• Empirically, all the ML tricks (aggregation functions, normalization, self-loops, bias, skip-connections) 

have a different effect on different graphs

• Mitigated by
• Sparsification

• Node embedding normalization and trainable weights regularization

• Skip-connections

• Changed GNN dynamics
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Over-squashing
OSQ



Over-squashing
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Over-squashing

• Number of nodes in the receptive field increases exponentially with the depth

• Neighbors in the k-hop increment exponentially with k
• How much does node u influences node v when considering all paths of length k?

if SP(𝑢, 𝑣) = 𝑟 in a binary tree, then:

• Compressed into fixed-size vector 𝑋𝑖 =
• No longer sensitive in relative terms

• Therefore, if there is bottlenecks in the graph, all information is compressed and 
have to pass through that bottleneck → exponential compression
• Long-range fails X

[Alon and Yahav 2021; Topping et al 2022]

Normalized connection 
strength between u and v
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Over-squashing

• Synthetic benchmark for controlling over-squashing

• Tree problem with controllable depth

• Training accuracy drops with depth

• Some types of GNNs more susceptible to over-squashing

• +FA propose a Full Connected graph in the last MP layer

NeighborsMatch problem

[Alon and Yahav 2021]
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How to Measure Over-squashing?

• Cheeger constant and bottleneck
[Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

• Effective resistance / Commute Times
[Arnaiz-Rodriguez et al '22 ; Banjeree et al ‘22;
Di Giovanni et al., '23; Black et al., ‘23]

• Jacobian (Sensitivity analysis)
[Xu et al '18; Di Giovanni et al '23; Black et al '23]

• Curvature (Balanced Forman, Ollivier)
[Topping et al '22]

• Hessian measure
[Di Giovanni and Rusch et al. '24]

How to measure the bottlenecks in the graph?

Betweenness centrality?
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• Cheeger constant
measures the MinCut to disconnect the graph

Measures of OSQ
Cheeger constant, Spectral Gap and Effective Resistance

[Lovász 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]
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• Cheeger Inequality• Cheeger constant
measures the MinCut to disconnect the graph

Measures of OSQ
Cheeger constant, Spectral Gap and Effective Resistance

[Lovász 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]
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• Cheeger Inequality• Cheeger constant
measures the MinCut to disconnect the graph

Measures of OSQ
Cheeger constant, Spectral Gap and Effective Resistance

[Lovász 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

• Cheeger constant and Effective Resistance
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• Cheeger Inequality• Cheeger constant
measures the MinCut to disconnect the graph

Measures of OSQ
Cheeger constant, Spectral Gap and Effective Resistance

[Lovász 1993; Chung 1997; Qiu and Hancock 2007] [Topping et al ‘22; Arnaiz-Rodriguez et al ‘22; Banjeree et al ‘22]

• Cheeger constant and Effective Resistance

• Spectral Gap and Effective Resistance
• Lovász Bound

• More ER-related bounds
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

Sensitivity between node embeddings
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

Sensitivity between node embeddings

Connection to under-reaching

[Gutteridge et al 2023]
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

• How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

Sensitivity between node embeddings

Δ node v self-sensitivity VS u->v sensitivity
from layer k features to layer m features
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

• How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

Sensitivity between node embeddings

Δ node v self-sensitivity VS u->v sensitivity
from layer k features to layer m features

Same but reversed for v->u
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• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

• How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

Measure Over-squashing
Sensitivity between node embeddings

Δ node v self-sensitivity VS u->v sensitivity
from layer k features to layer m features

Same but reversed for v->u

Symmetric Jacobian Obstruction:
Symmetric Δ self-sensitivity VS pairwise sensitivity from layer-k’s features to layer-m’s features
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
Influence Score [Xu et al 2018; Hamilton 2020]

• How to measure the overall sensitivity between both nodes? [Di Giovanni et al 2023; Black et al 2023]

• Extension to m layers

Sensitivity between node embeddings

Δ node v self-sensitivity VS u->v sensitivity
from layer k features to layer m features

Same but reversed for v->u

Symmetric Jacobian Obstruction:
Symmetric Δ self-sensitivity VS pairwise sensitivity from layer-k’s features to layer-m’s features

Symmetric Jacobian 
Obstruction after m layers
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
[Di Giovanni et al 2023; Black et al 2023] → Bounded by topology

Sensitivity between node embeddings – Bounds

Normalized # paths of 
length r between u and v
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Measure Over-squashing

• How much do the original features of the u node affects the features of node v after m layers? 
[Di Giovanni et al 2023; Black et al 2023] → Bounded by topology

• Jacobian obstruction and sum of pairwise jacobians→ Bounded by ER

Sensitivity between node embeddings – Bounds

Normalized # paths of 
length r between u and v

The larger Effective Resistance is, 
the higher the Symmetric Jacobian Obstruction

[Di Giovanni et al 2023] 

The larger Total Effective Resistance is, 
the lower the sum of pairwise jacobians

[Black et al 2023] 

Connection to what functions can be learned by a MPNN in [Di Giovanni et al 2024] 172



Solutions

GRAPH REWIRING

More:
- Multi-hop architectures 
- Transformers

Advanced GNN 
Architectures

Figures from Topping et al 2022, Arnaiz-Rodriguez et al 2022, Errica et al 2023, Geisler et al 2024 

Virtual Nodes

- Adaptative
- Transformers
- Advanced Spectral Filters
- Physics-Informed Methods

174



Graph Rewiring
• Change the edges of the graph such that message passing mechanism is affected

Reduce bottlenecks
Increase sensitivity between 
distant and relevant nodes

Connecting 
long-distance nodes
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Graph Rewiring
• Change the edges of the graph such that message passing mechanism is affected

• Spatial vs Spectral

Reduce bottlenecks
Increase sensitivity between 
distant and relevant nodes

Connecting 
long-distance nodes

Both Reduce 
the ER of G

[Di Giovanni et al 2023]

Spectral
Add edges based on a global
spectral measure (connectivity)

Spatial
Add edges within a 
certain k-hop (locality)
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Graph Rewiring
• Change the edges of the graph such that message passing mechanism is affected

• Spatial vs Spectral

• Static vs Dynamic

Reduce bottlenecks
Increase sensitivity between 
distant and relevant nodes

Connecting 
long-distance nodes

Both Reduce 
the ER of G

[Di Giovanni et al 2023]

Nodes do not always interact with the same delay [Gutteridge et al 2023]

Spectral
Add edges based on a global
spectral measure (connectivity)

Spatial
Add edges within a 
certain k-hop (locality)
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Graph Rewiring
• Change the edges of the graph such that message passing mechanism is affected

• Spatial vs Spectral

• Static vs Dynamic

• Pre-processing vs In-processing (differentiable and data-driven)

Reduce bottlenecks
Increase sensitivity between 
distant and relevant nodes

Connecting 
long-distance nodes

Both Reduce 
the ER of G

[Di Giovanni et al 2023]

Rewiring is learned during the GNN training

[Arnaiz-Rodriguez et al 2022]

Nodes do not always interact with the same delay [Gutteridge et al 2023]

Spectral
Add edges based on a global
spectral measure (connectivity)

Spatial
Add edges within a 
certain k-hop (locality)
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Graph Rewiring
Spatial vs Spectral

Spectral
Add edges based on a global spectral measure
(connectivity)

Preserve sparsity

Does not maintain the locality information

Spatial
Add edges within a certain k-hop (locality). Also, multi-
hop architectures (𝐴𝑘) and transformers (full connected)

Need for very dense graphs to solve OSQ

Preserve locality

179
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Graph Rewiring
Spatial vs Spectral

Spectral
Rewiring:
Based on PageRank smoothing: DIGL [Gasteiger et al 19]

Learnable Effective Resistance: DiffWire (Data-driven 
rewiring) [Arnaiz-Rodriguez et al 22]

Increase approximately 𝝀𝟐: FOSR [Karhadkar et al. 22]

Cayley expander graphs: EGP [Deac et al. 22]

Precomputed Effective Resistance: GTR [Black et al 23]

Spatial

Rewiring:
Based on Curvature: SDRF [Topping et al 22]

Based on random edges: G-RLEF [Banerjee et al 22]

High-order networks:
SPN [Abboud et al. 22], Mix-Hop [Abu-El-Haija et al 19],
H2GNN [Zhue et al 20], DHGR [Bi et al 22],
DRew [Gutteridge et al 23], GREET [Liu et al 23b]

Transformers and Positoinal Encodings (PE): 
PE [Brüel-Gabrielsson et al 23], Graphormer [Ying et al, 

'21], SAN [Kreuzer et al, '21], GraphGPS [Rampášek et al, 

'22], Exphormer [Shirzad, Velingker, Venkatachalam et al, 

'23]

Spatio-Spectral
LASER [Barbero et al 2023]

Spatio-Spectal GNNs[Geisler et al 2024] – GNN
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Graph Rewiring
Spectral VS Spatial
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Spatial Rewiring - Curvature
SDRF [Topping et al 2022]
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Spatial Rewiring - Curvature
SDRF [Topping et al 2022]
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Spatial Rewiring - Curvature

• How to identify bottleneck? Edges with lowest Ricci Curvature (Balanced Forman as lower bound)

• How to fix bottlenecks? Add edges around edges with low curvature
1. Identify edge 𝒆𝒎𝒊𝒏 with lowest Ricci Curvature

2. Add edge between 2 (𝒌, 𝒍) neighbors of the endpoints 𝒆𝒎𝒊𝒏
sampled with probability proportional to the improvement of the curvature of 𝒆𝒎𝒊𝒏 after adding (𝒌, 𝒍) 

3. Remove edge 𝒆𝒎𝒂𝒙 with highest Ricci Curvature

SDRF [Topping et al 2022]
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Spectral Rewiring – Differentiable 
DiffWire - Background

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. 

DiffWire: Inductive Graph Rewiring via the Lovász Bound. In The First Learning on Graphs Conference, 2022.

CT(𝑢, 𝑣) = 𝐳𝑢 − 𝐳𝑣 2
2

𝐙 = arg min
𝑠.𝑡. 𝐙𝑇𝐙=𝕀

𝑇𝑟[𝐙𝑇𝐋𝐺𝐙]

𝑇𝑟[𝐙𝑇𝐃𝐺𝐙]

Effective Resistance

Commute Times

Commute Times Embedding

[Qiu and Hancock, 2006][Doyle and Snell, 1984]

𝐙 = 𝑣𝑜𝑙(𝐺)𝚲−1/2𝐅𝑇 given 𝐋 = 𝐅𝚲𝐅𝑇
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Spectral Rewiring – Differentiable 
DiffWire – CT Layer

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. 

DiffWire: Inductive Graph Rewiring via the Lovász Bound. In The First Learning on Graphs Conference, 2022.

• Learn to rewire in a GNN layer
• Differentiable pipeline

• Data-Driven

• GNN Layer learns the Commute Time Embedding between nodes
(therefore, it learns the Effective Resistance distance)

• Modifies the message passing (adjacency) using the learned CT → prioritized edges between nodes at large CT

𝐙 = arg min
𝑠.𝑡. 𝐙𝑇𝐙=𝕀

𝑇𝑟[𝐙𝑇𝐋𝐺𝐙]

𝑇𝑟[𝐙𝑇𝐃𝐺𝐙]

CT(𝑢, 𝑣) = 𝐳𝑢 − 𝐳𝑣 2
2
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Spectral Rewiring – Differentiable 
DiffWire

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. 

DiffWire: Inductive Graph Rewiring via the Lovász Bound. In The First Learning on Graphs Conference, 2022.

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

M
LP

ta
n

h

𝐗

A

𝐙 ∈ ℝ𝑛×𝑂(𝑛) 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛=
cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓

𝐙 = arg min
𝑠.𝑡. 𝐙𝑇𝐙=𝕀

𝑇𝑟[𝐙𝑇𝐋𝐺𝐙]

𝑇𝑟[𝐙𝑇𝐃𝐺𝐙]
𝐙 = 𝑣𝑜𝑙(𝐺)𝚲−1/2𝐅𝑇 𝐿𝐶𝑇 =

𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

Use Effective Resistances 

matrix (commute times) to 

modify the input adjacency 

matrix for new layers

CT-layer can be added as the first 
layer or as the # desired layer
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Spectral Rewiring – Differentiable 
DiffWire

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. 

DiffWire: Inductive Graph Rewiring via the Lovász Bound. In The First Learning on Graphs Conference, 2022.

M
LP

 
ta

n
h

𝐗 𝐙 ∈ ℝ𝑛×𝑂(𝑛)

CTE as differentiable Positional Encoding

CT as diffusion matrix

CT as edge features

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹
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Spectral Rewiring – Differentiable 
DiffWire

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. 

DiffWire: Inductive Graph Rewiring via the Lovász Bound. In The First Learning on Graphs Conference, 2022.

CTE learned by CT-Layer as differentiable Positional Encoding

CT learned by CT-Layer as diffusion matrix

PE for homophily
Diffusion for heterophily
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Curvature and Effective Resistance

• Direct connection for node and edge curvature [Devriendt and Lambiotte, 2022]

• Direct connection with node bottleneckedness [Arnaiz-Rodriguez et al 2024]

Connection of curvature and Effective Resistance [Devriendt and Lambiotte, 2022]

Node Curvature Edge Curvature

Node bottleneckedness

Arnaiz-Rodriguez, A., Curto, G., & Oliver, N. (2024).

Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance. In TrustLOG Workshop at WWW 2024. 190



• Estimate the change of 𝝀𝟐 after edge (𝑢, 𝑣) addition

• Goal: minimize the dominant term

1. Approximate 𝜆2 via power iteration

2. Choose edge that minimizes the dominant term

Spectral Rewiring
FOSR [Karhadkar et al 2022]
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Spectral Rewiring 

• How much adding a specific decreases R𝑡𝑜𝑡? 

• Biharmonic Distance [Lipman et al., 2010]

• Proportional to the partial derivative of the total 
resistance with respect to the weight of the edge
[Gosh et al., 2008]

GTR [Black et al 2023]
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GTR and FOSR

Number of added links

SDRFGTR
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Spatial Rewiring - Dynamic
Drew [Gutteridge et al 2023]

• Closer nodes should interact earlier in the architecture

• Rewire to modulate not only if nodes interact, but also when.
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Spatial Rewiring - Dynamic
Drew [Gutteridge et al 2023]

• Closer nodes should interact earlier in the architecture

• Rewire to modulate not only if nodes interact, but also when.

• Multi-hop rewiring that evolves during the layers.
• Nodes interact from a certain depth 

(Hop 𝒍+𝟏 is only aggregated in layer 𝒍)
• Nodes interact with Delay

(nodes interact with previous states)

Separate aggregation for 
each k-hop neighborhood

Hop 𝒍 + 𝟏 is only 
aggregated in layer 𝒍

Delay for each hop to interact with 
the previous states of the nodes
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Spatio-Spectral Rewiring
LASER [Barbero et al 2024]

Spectral
Add edges based on a spectral measure

Preserve Sparsity

Override locality information

Spatial
Add edges within a certain k-hop

Dense nature

Preserve locality

LASER

Preserve Sparsity

Preserve locality
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Spatio-Spectral Rewiring
LASER [Barbero et al 2024]

• Use a sequence of rewired graphs (ℓ snapshots)

• Successive "local" modifications

Connectivity threshold
Connectivity measure

µ : V × V → R

Locality restriction
Locality measure

ν : V × V → R Preserves Sparsity

Preserves locality
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Other Rewiring Flavors
Beyond pure Spatial or/and Spectral

• Sampling: GraphSAGE [Hamilton et al., '17],

GAT [Veličković et al '17]

• Graph transformers with PE: Graphormer
[Ying et al., '21], SAN [Kreuzer et al., '21], GraphGPS
[Rampášek et al., '22], Exphormer [Shirzad, Velingker, 

Venkatachalam et al., '23]

• High-Order and Hierarchichal GNNS: Mix-Hop
[Abu-El-Haija et al '19], H2GNN [Zhue et al '20], 
DHGR [Bi et al '22], …
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Open problems for Graph Rewiring

• Blind to the downstream task

• Focus on addressing OSQ while potentially introducing OSM

• Fail to answer how much rewiring is necessary to do

• Most of them pre-processing approaches → task-agnostic and non-learnable
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Virtual Nodes
• Add new nodes that serve as a global attention shortcuts [Scarselli et al 08; Pham et al 17]

• How many nodes do we add?

• One global node

• Several virtual nodes

• Application to transformers → memory sinks [Cai et al 23; Shirzad, Velingker, Venkatachalam et al., 23]

• How do we connect existing nodes to virtual ones?
• All-to-one
• Many-to-many

Mean node aggregation

Update for node embedding

VN 
embedding
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Virtual Nodes
• Add new nodes that serve as a global attention shortcuts [Scarselli et al 08; Pham et al 17]

• How many nodes do we add?

• One global node

• Several virtual nodes

• Application to transformers → memory sinks [Cai et al 23; Shirzad, Velingker, Venkatachalam et al., 23]

• How do we connect existing nodes to virtual ones?
• All-to-one
• Many-to-many

Why virtual nodes are beneficial? [Southern et al 2024]

• Independent on of v whenever u and v are separated 
by more than 2 hops

• Any message is first received by node at layer ℓ + 1 
through the VN

• For many real-world graphs, the change is negative
(exception e.g. in complete graphs)

• On these, the # layers required by MPNN + VN to learn graph 
functions with strong mixing is smaller than that of MPNN

SensitivityAverage change in commute time

• For MPNN + VN with mean node aggregation 
for the embedding of the virtual node VN
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Adaptative Message Passing [Errica et al 24] 
learn the optimal depth and filter messages dynamically

• Differentiable message filtering mechanism decides what to propagate 
at each layer 

• Decides what to propagate at each layer

Advanced Architectures
Adaptative Architectures

What messages to share and 
how many times?
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Adaptative Message Passing [Errica et al 24] 
learn the optimal depth and filter messages dynamically

• Differentiable message filtering mechanism decides what to propagate 
at each layer 

• Decides what to propagate at each layer

• Dynamic adjustment of network depth
• Learn depth using variational Inference
• how many message-passing layers are required for a specific task?

Advanced Architectures
Adaptative Architectures

What messages to share and 
how many times?
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OSQ Take-away

▪ Over-squashing is caused by bottlenecks in the graph

▪ Measured by spectral quantities and by the Jacobian obstruction

▪ Obstruction is bounded by the topology and it’s independent of the GNN

▪ Solutions
▪ Rewiring (spatial vs spectral, static vs dynamic, pre-processing vs learnable)

▪ Virtual nodes

▪ Different architectures for diffusion in graphs

▪ Multi-hops, Adaptative, Physics-informed, Spectral, Transformers…

▪ Note: Some approaches are combined (e.g. global nodes+ rewiring, multi-hop + rewiring…)
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Trade-off between OSM and OSQ



Trade-off between OSM and OSQ
A comparison of the bounds

The lower 𝝀𝟐 → the higher the bottleneck → the more OSQ

The higher 𝝀𝟐 → the faster convergence→ the more OSM
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Trade-off between OSM and OSQ

The lower 𝝀𝟐 → the higher the bottleneck → the more OSQ

The higher 𝑹𝒕𝒐𝒕→ the lower the bound of sum pairwise 
sensitivities → the more OSQ

The higher 𝑹𝒖𝒗→ the larger the pairwise obstruction 
→ the more OSQ

The higher 𝝀𝟐 → the faster convergence→ the more OSM

The lower 𝑹𝒕𝒐𝒕 → the faster convergence→ the more OSM

A comparison of the bounds
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Risk of over-smoothing

Good to mitigate over-squashing

Trade-off between OSM and OSQ

Good to mitigate over-smoothing

Risk of over-squashing
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Trade-off between OSM and OSQ

• The bottleneck of the graph is upper bounded by the inverse of the number of steps needed to 
reach at most 𝝐-feature collapse [Giraldo et al 2023]

Layers needed for feature collapse vs Cheeger constant

s is the number of steps to reach 𝝐-feature collapse
𝝐-feature collapse

Difference of signal 𝒇 and 𝝅 at most 𝝐
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Trade-off between OSM and OSQ

• The bottleneck of the graph is upper bounded by the inverse of the number of steps needed to 
reach at most 𝝐-feature collapse [Giraldo et al 2023]

Layers needed for feature collapse vs Cheeger constant

s is the number of steps to reach 𝝐-feature collapse

Avoid OSM making the signal to never converge 
→ Cheeger constant is 0

Avoid OSQ making the bottleneck large
→ small steps for 𝜖-feature collapse

𝝐-feature collapse
Difference of signal 𝒇 and 𝝅 at most 𝝐

Mixing steps

Bottleneck
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Trade-off between OSM and OSQ

▪ Relational GNNs
▪ FOSR [Karhadkar et al 22] and LASER [Barbero et al 24].

▪ Curvature Methods
▪ SJLR [Giraldo et al 23] adds and remove edges and analysis of trade-off in the spectral domain.

▪ BORF [Nguyen et al 23] adds and remove edges with low and high curvatures (solving OSQ and OSM) resembling an expander.
They connect of curvature with the DE and with Jacobian.

▪ AFR-3 [Fesser and Weber, 24] propose a heuristic to choosing how many edges to add in curvature methods.
They connect OSM and OSQ with augmented Forman curvature.

▪ CurvDrop [Liu et al 23] sample edges based on curvature to mitigate OSM and OSQ.

▪ Spectral
▪ ProxyDelete [Jamadandi et al 24] analyze that deleting edges can address OSM and OSQ simultaneously.

▪ UniFilter [Huang et al 24] propose a general graph filter based on a universal polynomial basis tailored for different 
heterophily degrees

▪ More
▪ Adaptative Message Passing [Errica et al 24] propose a probabilistic framework to learn how many messages to exchange 

between nodes (GNN depth) and which messages to filter out to prevent feature convergence and increase feature 
sensitivity. 

▪ [Southern et al 24] compares virtual nodes with smoothing techniques and over-squashing measures.

Solutions and Analysis
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Open Questions



Open Questions on OSM
▪ It is not always correlated with the accuracy… Is it really a problem of GNNs? Not the only one

▪ Role of real world GNNs and training process? Mitigated even with gated GCNs or relational GCNs

▪ Is OSM always a problem? Not too little, not too much (focus before 𝑘 → ∞)

▪ Graph CLF → beneficial smoothing is desired if it is aligned with the task

▪ Node  CLF → For homophily some OSM is desired! [Keriven 2022]

OSM happens faster in some subspaces than in others Useful if labels are correlated with those subspaces
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Open Questions on OSQ
• Bottleneck vs Sensibility – How do they measure OSQ? Are we identifying information bottlenecks?

𝜆2 increases and 𝑅𝑡𝑜𝑡 decreases, cool! But… Is OSQ Solved?
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Open Questions on OSQ
• Bottleneck vs Sensibility – How do they measure OSQ? Are we identifying information bottlenecks?

𝜆2 increases and 𝑅𝑡𝑜𝑡 decreases, cool! But… Is OSQ Solved?

Does not changeBecomes extremeBecomes extremeSeems to work very well but…
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Open Questions on OSQ
• Are we properly measuring which graphs suffer from task-relevant over-squashing?

• Bottleneck vs Sensibility measures are independent of the label of the nodes – Measures blind to task (labels)

• Prior work connection of OSQ with the function that MPNN seek to learn [Di Giovanni et al 2024]

• Homophilic bottlenecking: analyze combined effect of heterophily and over-squashing [Rubin et al 2023]

• OSQ datasets are currently measured with heterophily metrics – Heterophily is not the same as long range! 

• Most OSQ mitigation strategies are task-agnostic and non-learnable

m

Homophilic but long-range

Heterophilic but short-range

1-hop
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Open Questions on OSQ

• K-hop homophily metrics. High-order homophily.

• Spectral metrics

• Graph Fourier operator. Project Y signal in the spectral domain.

Beyond Heterophily - How does the structure align with the labels?

• More discussion about homophily in [Zhu et al 20; Qian et al 21; Luan et al 22; Ma et al 22; Huang et al 24; Luan et al 24; Zheng et al 24]

Homophilic signals have higher energy 
in low frequency components 

Heterophilic signals have higher energy 
in high frequency components

[Zhu et al 2020; Luan et al 2024]
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Underlying problem: Probability distribution of G

Graph 
Topology

A

Node 
Features

X

Node
Labels

Y

Homophily
Heterophily

Is the structure helpful?

Biased 
Topology

Survey on Deep Graph Generation [Zhu et al 2022]

Survey on Graph Structure Learning [Zhu et al 2021; Luan et al 2024]

Survey on Causality on GNNs [Jiang et al 2023]
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Conclusions OSM and OSQ

• OSM → Feature convergence to not expressive
• Dirichlet Energy-based measures

• Due to network depth and graph density

• Solutions based on feature normalization, graph sparsification, W normalization and time-continuous GNNs

• OSQ → Exponential compression of nodes’ features into fixed-length feature vectors
• Measured by

• Feature compression → Existence of bottlenecks in the graph

• Feature Sensitivity → Interaction between nodes’ features

• Solutions based on graph rewiring, virtual nodes or adaptative architectures

• Trade-off→ Both problems are connected
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Recap on open questions

• OSM
• Extend OSM analysis to real world GNNs… Is it really a problem on GNNs?

• Accuracy drops even with high DE’s

• Is over-smoothing always bad?

• Task-oriented over-smoothing

• OSQ
• Identify differences between bottleneck analysis and sensitivity

• Do both happen at the same time?

• Task-oriented Over-squashing

• might not be always bad

• Alignment of structure, features and labels

• Currently: homophily. But homophily not is long range

• What is the probability distribution of a graph/s?

Assumption of analysis
Long Range
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More recent work

▪ ICML24
▪ https://github.com/azminewasi/Awesome-Graph-Research-ICML2024

▪ ICLR24
▪ https://github.com/azminewasi/Awesome-Graph-Research-ICLR2024 

▪ LoG Conference
▪ Sept 4th Abstract Deadline

▪ Sept 11th Submission Deadline

azminewasi

Azmine Toushik Wasi
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